berkley 半导体工艺讲义c_07--离子注入
时间:2025-05-15
时间:2025-05-15
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Ion Implantation+ y Blocking mask Si C(x) as-implant depth profile
x
Equal-Concentration contours
Depth x
Concentration Profile versus Depth is a single-peak functionReminder: During implantation, temperature is ambient. However, Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900ooC)is required to anneal out defects. post-implant annealing step (>900 C) is required to anneal out defects.Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Advantages of Ion Implantation Precise control of dose and depth profile Low-temp. process (can use photoresist as mask) Wide selection of masking materialse.g. photoresist, oxide, poly-Si, metal
Less sensitive to surface cleaning procedures Excellent lateral dose uniformity (< 1% variation across 12”wafer)
Application example: self-aligned MOSFET source/drain regionsAs+ As+ As+
Poly Si Gate
n+Professor N Cheung, U.C. Berkeley
p-Si
n+
SiO22
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Monte Carlo Simulation of 50keV Boron implanted into Si
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
(1) Range and profile shape depends on the ion energy (for a particular ion/substrate combination) (2) Height (i.e. Concentration) of profile depends on the implantation dose
C(x) in#/cm3
[Conc]=# of atoms/cm33[Conc]=# of atoms/cm[dose]=# of atoms/cm22[dose]=# of atoms/cm
doseφ
=∫
∞ C 0
( x )dx
Depth x in cmProfessor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Mask layer thickness can block ion penetration
photoresist SiO2, Si3N4, or others
Thick Mask
Thin mask Incomplete Blocking
Complete blocking
No blocking SUBSTRATE
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Ion Implantere.g. AsH3 As+, AsH+, H+, AsH2+ Ion source As+
$3-4M/implanterMagnetic Mass separation~60 wafers/hour
Accelerator Voltage: 1-200kV Dose~ 1011-1016/cm2 Accuracy of dose:<0.5% Uniformity<1% for 8” wafer Accelerator Column
waferTranslational wafer holder motion.
ion beam (stationary) spinning wafer holder6
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Eaton HE3 High Energy Implanter, showing the ion beam hitting the 300mm wafer end-station.
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Implantation DoseFor singly charged ions (e.g. As+)
Ion Beam Current in amps Implant× time q DoseΦ=[Implant area]=# cm 2Over-scanning of beam across wafer is common. Over-scanning of beam across wafer is common. In general,,Implant area> Wafer area In general Implant area> Wafer areaProfessor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Practical Implantation Dosimetryaperture for dose monitoring
Wafer holder wheel ions+ Faraday cup+V A+ bias applied to Faraday Cup to collect all secondary electrons. Cup current= Ion current
Secondary electron effect eliminated
e
* (Charge collected b
y integrating cup current )/ (cup area)= doseProfessor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Meaning of Dose and ConcentrationDose[#/area]: looking downward, how many fish per unit area for ALL depths?
Concentration[#/volume]: Looking at a particular location, how many fish per unit volume?
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Ion Implantation Energy Loss MechanismsNuclear stopping Si+ Crystalline Si substrate damaged by collision e+
+
Si
e Electronic stopping+ Si
Electronic excitation creates heatProfessor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Energy Loss and Ion PropertiesLight ions/at higher energy Heavier ions/at lower energy EXAMPLES Implanting into Si: more electronic stopping more nuclear stopping
H+ B+ As+
Electronic stopping dominates Electronic stopping dominates Nuclear stopping dominates13
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Stopping Mechanisms
B into Si P into Si As into Si
E1(keV) 3 17 73
E2(keV) 17 140 800
Professor N Cheung, U.C. Berkeley
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Sn≡ dE/dx|n Se≡ dE/dx|e
Depth x E~0 Se Substrate Se Sn
Surface E=Eo A+ Eo= incident kinetic energy
Sn
x~ Rp More crystalline damage at end of range Sn> SeProfessor N Cheung, U.C. Berkeley
Less crystalline damage S e> Sn15
半导体,工艺, 伯克利分校
EE143 F05
Lecture 7
Professor N Cheung, U.C. Berkeley
…… 此处隐藏:2354字,全部文档内容请下载后查看。喜欢就下载吧 ……