清华大学 凸优化 讲义 qcqp-integer_8630010
时间:2025-04-21
时间:2025-04-21
清华大学 凸优化 讲义
五道口最有人气的论坛 http://www.77cn.com.cn/bbs
Extended Canonical Duality and Conic Programming for Solving 0-1 Quadratic Programming ProblemsWenxun Xing Department of Mathematical Sciences, Tsinghua University, Beijing, 100084 Email: wxing@http://www.77cn.com.cn Coauthors: Cheng Lu, Zhenbo Wang and Shu-Cherng Fang
五道口最好的生活网 http://www.77cn.com.cnTsinghua University, June, 2010
清华大学 凸优化 讲义
OUTLINE五道口最有人气的论坛 http://www.77cn.com.cn/bbs1
0-1 Quadratic Programming Canonical duality approach Canonical duality for 0-1 quadratic programming Extended canonical duality and conic programming Practical algorithm and numerical experiments Concluding remarks
2
3
4
5
6
五道口最好的生活网 http://www.77cn.com.cnTsinghua University, June, 2010
清华大学 凸优化 讲义
0-1 Quadratic Programming (QIP)五道口最有人气的论坛 http://www.77cn.com.cn/bbsZ0= min F (x)= 1 x T Qx+ c T x 2 s.t. x∈{0, 1}n, where Q is an n× n real symmetric matrix and c is a vector in Rn . QIP in applications: the max-cut problem in combinatorial optimization. QIP is NP-Hard. Quadratically constrained quadratic problem (QCQP) Z0= min F (x)= 1 x T Qx+ c T x 2 s.t. xi2 xi= 0, i= 1, 2,···, n.
五道口最好的生活网 http://www.77cn.com.cnTsinghua University, June, 2010
清华大学 凸优化 讲义
Solution procedures for (QIP)Find an exact global optimal solution to QIP: some well performed enumeration strategies like the branch-and-bound algorithm with a lower bound estimation. Approximation algorithms for nding an approximate solution to some classes of quadratic integer problems, the 0.878 approximation algorithm for max-cut. Identify some sub-classes that can be solved in polynomial time, for examples, the canonical duality theory, spectrum decomposition methods. Our work extends the canonical duality theory to solve the 0-1 quadratic programming problem, discovers a new global optimality condition for solving QIP and identi es a new solvable sub-class of QIP .
五道口最有人气的论坛 http://www.77cn.com.cn/bbs
五道口最好的生活网 http://www.77cn.com.cnTsinghua University, June, 2010
清华大学 凸优化 讲义
Recent 0-1 quadratic programming papersS.-C. Fang, D.Y. Gao, R.-L. Sheu and S.-Y. Wu, Canonical dual approach to solving 0-1 quadratic programming problem, J. Industrial and Management Optimization, 3, (2007), 125-142. C. Lu, Z. Wang and W. Xing, An improved lower bound and approximation algorithm for binary constrained quadratic programming problem, J. Global Optimization, DOI: 10.1007/s10898-009-9504-1. X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming, available at: http://www.77cn.com.cn/DB FILE/2010/01/2512.pdf. Z. Wang, S.-C. Fang, D.Y. Gao and W. Xing, Global extremal conditions for multi-integer quadratic programming, J. Industrial and Management Optimization, 4, (2008), 213-225. Z. Wang, S.-C. Fang, D.Y. Gao and W. Xing, Canonical dual approach to solving the maximum cut problem, Working Paper, to appear in J. Global Optimization.五道
口最好的生活网 http://www.77cn.com.cnTsinghua University, June, 2010
五道口最有人气的论坛 http://www.77cn.com.cn/bbs
清华大学 凸优化 讲义
Canonical duality approachPrimal Problem
五道口最有人气的论坛 http://www.77cn.com.cn/bbsZ0= min s.t.1 P(x)= 2 x T Q0 x+ f0T x 1 T 2 x Qi x
+ fiT x≤ ci, i= 1, 2,···, m,
Lagrangian Function L(x,λ)= 1 T x (Q0+ 2m m m
λi Qi )x+ (f0+i=1 i=1
λi fi )T x i=1
λi ci,
whereλ= (λ1,λ2,···,λm )≥ 0. Bridge: Karush-Kuhn-Tucker condition L(x,λ)= (Q0+ mλi Qi )x+ f0+ mλi fi= 0 x i=1 i=1 λj ( 1 x T Qj x+ fjT x cj )= 0, j= 1, 2,···, m, 2 λ≥ 0.
五道口最好的生活网 http://www.77cn.com.cn
Tsinghua University, June, 2010
清华大学 凸优化 讲义
Canonical duality approachKey Assumption: (Q0+¯ x= (Q0+i=1
五道口最有人气的论坛 ) is invertible. http://www.77cn.com.cn/bbs mλQi=1 i i m m
λi Qi ) 1 (f0+i=1
λi fi ).
Canonical Duality Function¯ P d (λ)= L(x,λ)= 1 (f0+ 2m m m
λi fi )T (Q0+i=1 i=1
λi Qi ) 1 (f0+i=1
λi fi ) λT C.
五道口最好的生活网 http://www.77cn.com.cnTsinghua University, June, 2010
清华大学 凸优化 讲义
Property of canonical duality function五道口最有人气的论坛 http://www.77cn.com.cn/bbsTheorem For all 1≤ i, j≤ m, P d (λ) λi
=
m 1 T 1 Qi G 1 (f0 l=1λl fl ) G 2 (f0+ m fiT G 1 (f0+ l=1λl fl ) ci,
+
m l=1
λl fl )
2 P d (λ) λi λj
=m l=1
(Qi G 1 (f0+ where G= Q0+d
λl fl ) fi )T G 1 (Qj G 1 (f0+λl Ql . 2 P d (λ) λi λj
m l=1
λl fl ) fj ),
m l=1
Then the Hessian matrix
is a semi-de nite negative andm l=1
P (λ) is a concave function when (Q0+ positive.
λl Ql ) is de nite
五道口最好的生活网 http://www.77cn.com.cnTsinghua University, June, 2010
清华大学 凸优化 讲义
Suf cient condition for a feasible solution五道口最有人气的论坛 http://www.77cn.com.cn/bbsTheorem¯ When x= (Q0+ i= 1, 2,···, mm l=1
λl Ql ) 1 (f0+
m l=1
λl fl ), we have for
1 P d (λ)¯¯¯= x T Qi x+ fiT x ci . λi 2(λ m If there existsλ ∈ R+ with P λi stationary point of P d (λ), then md
)
= 0 for any 1≤ i≤ m, i.e. am
x = (Q0+l=1
λ Ql ) 1 (f0+ ll=1
λ fl ) l
is a feasible solution of the primal (P0 ). d (λ If there existsλ > 0 with P λ …… 此处隐藏:6544字,全部文档内容请下载后查看。喜欢就下载吧 ……