高二理科圆锥曲线复习题

时间:2025-07-10

1、平面内有两个定点F1,F2和一动点M,设命题甲,||MF1| |MF2||是定值,命题乙:点M的轨迹是双曲线,则命题甲是命题乙的

( )

A.充分但不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、若椭圆

x

2a2

y

2b

2

1(a b 0)的左、右焦点分别为F2

1、F2,线段F1F2被抛物线y=2bx的焦

点分成5:3两段,则此椭圆的离心率为

( ) A.

1617

B.

4

C.

45

D.

255

3、直线l经过抛物线y2

17

=4x的焦点,与抛物线交于A,B两点,若|AB|=8,那么直线l的倾斜角是( ) A.30°或60°

B.30°或150° C.45°或60°

D.45°或135°

22

4、已知P是椭圆x4y

3=1上的点,FPF PF1,F2分别是椭圆的左、右焦点,若 121|PF|PF ,

1| 2|2则△F1PF2的面积为 ( ) A.3

3

B.

C.2

D.33

5、设A(x),B(x2

1,y12,y2)是抛物线y=2px(p>0)上的两点,并且满足OA⊥OB,则y1y2等于( ) A.-4p2 B.-3p2 C.-2p2 D.-p2

6、已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )

A.圆 B.椭圆 C.双曲线 D.抛物线 7、已知直线ax by c 0(abc 0)与圆x2 y2 1相切,则三条边长分别为|a|,|b|,|c|的三

角形 ( ) A.是锐角三角形

B.是直角三角形 C.是钝角三角形

D.不存在 8、设a,b R,a2

2b2

6,则a b的最小值是

x229、已知F1、F2是双曲线a

2

yb

2

1(a 0,b 0)的两焦点,以线段F1F2为边作正三角形MF1F2,

若边MF1的中点在双曲线上,则双曲线的离心率是

、在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和C(4,0),顶点B在椭圆x2y2

10=1上,

sinA+sinC259

11、已知抛物线sinB

=________.

C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与

C的一个交点为B.若AM→=MB→

,则p=________. 12 、以下几个关于圆锥曲线的命题中:①

设A、B为两个定点,k为非零常数

|PA| |PB| k,则动点P的轨迹为双曲线;②

设定圆C上一定点A作圆的动点弦AB O为坐标原点,若 1

OP2

(OA OB),则动点P的轨迹为椭圆;③方程2x2 5x 2 0

2

两根可分别作为椭圆和双曲线的离心率;④双曲线

x

2

25

y

9

1与

椭圆

x

2

2

35

y 1有相同焦点.其中真命题的序号为 。

x213、如图,Fy21,F2分别为椭圆a

2

b

2

1的左、右焦点,

点P在椭圆上,△POF2是面积为3的正三角形,则b2 14、已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是3

.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.

(1)求椭圆C的方程;

(2)若圆P与x轴相切,求圆心P的坐标.

15、已知直线AB与抛物线y2

=2px(p>0)交于A,B两点,且以AB为直径的圆经过坐标原点O,OD⊥AB于点D,点D的坐标为(2,1),求抛物线的方程.

16、在平面直角坐标系xoy中,抛物线y

x2

AO BO(如图所示)

(1)求 AOB得重心G(即三角形三条中线的交点)

的轨迹方程;

(2) AOB

高二理科圆锥曲线复习题.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219