高中数学必修5解三角形及数列综合练习题

时间:2025-05-15

综合练习2

一、选择题

22

1.在 ABC中,角A,B,C所对的边分别为a,b,c,若a b 2bc,sinC 3sinB,则

A ( )

2 5

A.6 B.3 C.3 D.6

2

ABC

,内角A,B,C所对的边长分别为

A

3.在△ABC中,一定成立的等式是( )

A. asinA bsinB B. acosA bcosB C. asinB bsinA D. acosB bcosA

4.若△ABC的三个内角满足sinA:sinB:sinC 5:11:13,则△ABC A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形

D.可能是锐角三角形,也可能是钝角三角形 5.设△ABC的内角A,B,C的对边分别为a,b,c若a (b c)cosC,则△ABC的形状是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.锐角三角形

6.在△ABC中,内角A,B,C的对边分别是a,b,c,若b c 2b 4c

5且a

b c bc,则△ABC的面积为( )

2

2

2

2

2

7.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为(

) A

B C D2

8.

已知三角形的两边长分别为4,5,它们夹角的余弦是方程2x+3x-2=0

的根,则第三边

长是( ) A

B

C

D,sinAcosA cos2B

9.在 ABC中,角A,B,C所对的边分a,b,c.若aco

sA

bsinBA.-1 D.1

10.在

ABCA.60

C的值是( )

B.60或120 C.30

D.30或150

11.设△ABC中角A、B、C所对的边分别为a,b,c,且sinA cosB sinBco sAs in2C,

若a,b,c成等差数列且CA CB 18,则 c边长为( )

A.5 B.6 C.7 D .8 12.数列1,-3,5,-7,9,……的一个通项公式为

A.an 2n 1 B.an ( 1)n(1 2n) C.an ( 1)n(2n 1) D.an ( 1)n(2n 1) 13.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为

14.已知 an 为等差数列,若a1 a5 a9 8 ,则cos(a3 a7)的值为( )

A

B

. C.

11

D. 22

15.已知{an}为等差数列,其前n项和为Sn,若a3 6,S3 12,则公差d等于( ) (A) 1 (B)

16.在等差数列(A)9

(C) 2 (D) 3 {an}

中,2a4+a7=3,则数列(B)6

{an}

的前9项和等于( )

(D)12

(C)3

17.公差不为0的等差数列{an}的前21项的和等于前8项的和.若a8+ak=0,则k=( ) A.20 B.21 C.22 D.23 18.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,

为整数的正整数n的个数是( )

A.2 B.3 C.4

D.5

19.等差数列{an}的前n项和为Sn,若a1 11,a4 a6 6,则当Sn取最小值时,n ( )

A.6 B.7 C.8 D.9

20.已知公差不为零的等差数列 an 的前n项和为

Sn

,若

a10

S4

21.如果等差数列 an 中,a3 a4 a5 12,那么a1 a2 a7 ( ) A.14 B.21 C.28 D.35

22.一船以每小时15km

处看到一个灯塔B在北偏东60 ,行驶4h后,船到达C km. 23.在△ABC中,BC 2

则AB ______;△ABC的面积是______. 24.在锐角△ABC中,若a 2,b 3,则边长c的取值范围是_________ 25.已知数列 an 满足

a1 1 an 的通项公式为an=

26

27.在等差数列{an}

中,a1=-7,a7 4,则数列{an}的前n项和Sn的最小值为________. 28.设Sn是等差数列{an}的前n 29.等差数列 an 中,若a1 a2 4,a9 a10 12,则S30

30.某小朋友按如右图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,

6无名指,...,一直数到2013时,对应的指头是 (填指头的名称). 31.(本小题满分12分) 已知在△ABC中,AC=2,BC=1 (1)求AB

的值;

(2)求sin(2A C)的值。

32.△ABC中, a,b,c是A,B,C所对的边,S

(1)求∠B的大小;

(2)若a=4

b的值。

33.在 ABC中,A、B、C的对边分别为a、b、c,且bcosC 3acosB ccos

B. (1)求cosB的值;

(2)若BA BC 2a和c.

34.已知已知{an}是等差数列,期中a5 24,a7 14 求: 1.{an}的通项公式

2.数列{an}从哪一项开始小于0? 3.求S19

35.设 an 为等差数列,Sn

是等差数列的前n项和,已知a2 a6 2,S15 75. (1)求数列的通项公式an;(2)Tnn项和,求Tn.

*

36.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N).若b3=-2,b10=12,求a8的值

37.已知等差数列 的前n项和为Sn,若S13 26,a9 4,求: (1)数列的通

(2)a1 a3 a5 a2n 1.

综合练习2 参考答案 1

B

sinC 3sinB c 3b

,所以

A (0, ),

2.A a=2RsinA,c=2RsinC,b=2RsinB

A

3.C【解析】由正弦定理 2R变形可知C项asinB bsinA正确

sinAsinBsinC

4.C【解析】因为,sinA:sinB:sinC 5:11:13,所以由正弦定理知,a:b:c=5:11:13,

a=5k,b=11k,c=13k(k>0),

ABC一定是钝角三角

形,选C。

5.Aa (b c)cosC

(b c)(b2 c2 a2 bc)=0,

所以,b=c,选A。

6

.B【解析】根据题意,由于内角A,B,C的对边分别是a,b,c,若b c 2b 4c 5,且a b c bc …… 此处隐藏:3180字,全部文档内容请下载后查看。喜欢就下载吧 ……

高中数学必修5解三角形及数列综合练习题.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219