巨磁电阻效应及其应用

时间:2025-05-14

巨磁电阻效应及其应用 2007年7月27日 来源:《国际电子变压器》2007年7月刊 作者:

余声明

1 前言

磁性金属和合金一般都有磁电阻效应,所谓磁电阻是指在一定磁场下电阻发生改变的现象。所谓巨磁阻就是指在一定的磁场下电阻急剧变化而比常规磁电阻要大一个数量级以上的效应,是近十多年来发现的一种新现象。

在过去十多年中,已经发现了三种技术上可行的磁电阻:“巨磁电阻”(Giant Magneto-Resistive,GMR)、“超巨磁电阻”(Colossal Magneto-Resistance,CMR)和“穿隧磁电阻”(Tunneling Magneto-Resistive,TMR)。它们都具有三层结构:上下两层为磁性层引发电子自旋、产生磁场的层级;中间为非磁性层,其功能是产生变化的电阻。不同类型的磁电阻的非磁性层所使用的材料有所不同:GMR使用的是金属铜,CMR使用的是稀土锰氧化物,TMR则是使用氧化铝。

本文只就GMR效应、器件与应用作一论述。

2 巨磁电阻效应

1986年德国的Grunberg和C.F.Majkrgak等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中的层间耦合现象。1988年法国的M.N.Baibich等人首次在纳米级的Fe/Cr多层膜中发现

其Δρ/ρ在4.2K低温下可达50%以上,由此提出了GMR效应的概念, 在学术界引起了很大的反响。由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au 等具有显著GMR效应的层间耦合多层膜。1988年后的3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜如

[CoNiFe/CoFe/AgCu/CoFe/CoNiFe]等结构 ,此后更掀起了GMR效应的研发热潮。

GMR是一个量子力学效应,它是在层状的磁性薄膜结构中观察到的。这种结构由铁磁材料和非磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。三层结构的与自旋有关的输运性质如图1所示,上下两层为铁磁材料,中间夹层是非磁材料。铁磁材料磁矩的方向是由加到材料的外磁场控制的。现在可以制造出对小的磁场就能得到很大电阻变化的材料,并且可以在室温下工作。

巨磁电阻效应从发现到器件的商品应用也是一个迅速转化的过程。现已广泛应用于电子、磁信息存储等技术领域,还出现了许多GMR 器件,如磁盘驱动器的读写磁头和随机存储器(RAM)等。

磁电子新技术的实用化,源于纳米磁性材料和纳米制造技

术的成功开发。发现GMR效应后,在应用电子随机自旋度的道路上迈开了第一步。最近10多年来,对自旋输运电子技术的应用开发取得迅速的进展,收到明显的经济效益和社会效益。1995年,美国NVE公司开始制造和销售GMR电桥元件,1997年推出制作在半导体芯片上的数字式GMR传感器;1998年IBM公司开发成功自旋阀(SV)GMR读出磁头并正式上市,使硬磁盘驱动器(HDD)的面记录密度提高到20Gbpi。据统计,目前这种磁头已占领磁记录磁头市场份额的95%,每季度的产值可达10亿美元。2000年,富士通公司开发出记录密度达56.3Gbpi的SV GMR磁头;1998年,西门子公司开发的旋转检测GMR传感器上市;从1999年至2001年,美国的IBM、摩托罗拉,德国的Infineon等公司先后研制成功实用的MRAM芯片。

美国国防部高级研究计划局(DARPA)于1995年创立了一个联合企业,并拟订了一个正式的DARPA计划——“Spintronics"(自旋电子技术)。该项计划的核心内容是应用GMR效应,开发各种磁传感器和非易失存储器。同时,还拥有开发GMR以外的其他器件的特许权,其中包括自旋相关隧道结构及实用的磁性氧化物。DARPA计划排定日程,将在以后的几年内制造出1MbitMRAM芯片,开发出实用的军用和民用磁传感器和磁存储器。同时,着手Spin - FET、Spin -LED自旋共振隧道效应器件、自旋相关器件和

自旋量子化器件等多种新型磁电子器件的研究与开发。 目前磁电子技术的实用化进程可以说是日新月异。 3 巨磁电阻器件

运用GMR效应制成了许多实用的磁电子器件,它是近几年才出现的新型高技术产品,是采用纳米制造技术把微小尺寸的磁性元件与传统的半导体器件结合在一起,得到全新的或者高功能的器件,它们是:

3.1 SV-GMR磁头和传感器

构成GMR磁头和传感器的核心元件是自旋阀(SpinValve)元件。它的基本结构是由钉扎磁性层(例如Co)、Cu间隔层和自由磁性层(例如NiFe等易磁化层)组成的多层膜。钉扎层的磁矩固定不变,由于钉扎层的磁矩与自由磁层的磁矩之间的夹角发生变化会导致SV-GMR元件的电阻值改变,进而使读出电流发生变化。为了提高SV元件的灵敏度,必须把自由磁层做得很薄。但是,这样又将导致界面传导电子的不规则反射而降低电阻的变化率。因此,后来又增设了一层氧化物,使电子成镜面反射,故而又把这种元件叫做“镜面SV元件”。从2001年起,GMR磁头制造商正式采用镜面SV元件。据报告,用这种镜面SV GMR磁头,可以读出100Gbpi面记录信息。

1995年,在用绝缘隧道势垒层代替SV元件中的Cu间隔层时,发现了室温自旋相关隧道(SDT)效应,称为隧道结磁

电阻(TMR)效应。目前,由这种现象感生电阻的变化率已高达40%,是GMR效应的数倍至10倍,较之GMR元件,检测灵敏度有很大的提高。现在正在积极研究 …… 此处隐藏:5335字,全部文档内容请下载后查看。喜欢就下载吧 ……

巨磁电阻效应及其应用.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219