Asymptotics of the average height of 2--watermelons with a w
时间:2025-05-14
时间:2025-05-14
We generalize the classical work of de Bruijn, Knuth and Rice (giving the asymptotics of the average height of Dyck paths of length $n$) to the case of $p$--watermelons with a wall (i.e., to a certain family of $p$ nonintersecting Dyck paths; simple Dyck p
ASYMPTOTICSOFTHEAVERAGEHEIGHTOF2–WATERMELONS
WITHAWALL.
MARKUSFULMEK
Abstract.WegeneralizetheclassicalworkofdeBruijn,KnuthandRice(givingtheasymptoticsoftheaverageheightofDyckpathsoflengthn)tothecaseofp–watermelonswithawall(i.e.,toacertainfamilyofpnonintersectingDyckpaths;simpleDyckpathsbeingthespecialcasep=1.)Weworkoutthisasymptoticsforthecasep=2only,sincethecomputationsinvolvedarealreadyquitecomplicated(butmightbeofsomeinterestintheirownright).
arXiv
:math/0607163v2 [math.CO] 4 Sep 2006
1.Introduction
ThemodelofviciouswalkerswasoriginallyintroducedbyFisher[9]andreceivedmuchinterest,sinceitleadstochallengingenumerativequestions.Here,weconsiderspecialcon gurationsofviciouswalkerscalledp–watermelonswithawall.
Brie ystated,ap–watermelonoflengthnisafamilyP1,...PpofpnonintersectinglatticepathsinZ2,where
Pistartsat(0,2i 2)andendsat(2n,2i 2),fori=1,...,p,
allthestepsaredirectednorth–eastorsouth–east,i.e.,leadfromlatticepoint(i,j)to(i+1,j+1)orto(i+1,j 1),
notwopathsPi,Pjhaveapointincommon(thisisthemeaningof“noninter-secting”).
Theheightofap–watermelonisthey–coordinateofthehighestlatticepointcontainedinanyofitspaths(sincethepathsarenonintersecting,itsu cestoconsiderthelatticepointscontainedinthehighestpathPp;seeFigure1foranillustration.)
Ap–watermelonoflengthnwithawallhastheadditionalpropertythatnoneofthepathsevergoesbelowtheliney=0(sincethepathsarenonintersecting,itsu cestoimposethisconditiononthelowestpathP1;seeFigure2foranillustration.).
In[2],BonichonandMosbahconsidered(amongstotherthings)theaverageheightH(n,p)ofp–watermelonsoflengthnwithawall,H(n,p)=
1
(1.67p 0.06)2n+o
Date:February2,2008.
ResearchsupportedbytheNationalResearchNetwork“AnalyticCombinatoricsandProbabilisticNumberTheory”,fundedbytheAustrianScienceFoundation.
1
√
We generalize the classical work of de Bruijn, Knuth and Rice (giving the asymptotics of the average height of Dyck paths of length $n$) to the case of $p$--watermelons with a wall (i.e., to a certain family of $p$ nonintersecting Dyck paths; simple Dyck p
2MARKUSFULMEK
Figure1.A6–watermelonoflength46andheight
20
20
Figure2.A3–watermelonwithawalloflength11andheight
12
Thepurposeofthispaperistoworkouttheexactasymptoticsforthesimplespecialcasep=2.ThiswillbedonebyimitatingtheclassicalreasoningofdeBruijn,KnuthandRice[5]forthecasep=1(i.e.,fortheaverageheightofDyckpaths).However,eventhecasep=2involvesrathercomplicatedcomputations.Inparticular,weshallneedinformationsaboutresiduesandevaluationsofadoubleDirichletseries,whichweshall(partly)obtainbyimitatingRiemann’srepresentationofthezetafunction[6,section1.12,(16)].
1.1.Notationalconventions.Fork,n∈Z,weshallusethenotationintroducedin[12]fortherisingandfallingfactorialpowers,i.e.
(n)
:=1,(n)
:=n·(n 1)···(n k+1)ifk>0.
:=0ifk<0,(n)0
Forthebinomialcoe cientweadopttheconvention
k
(n)nif0≤k≤n,k!:=k0else.
We generalize the classical work of de Bruijn, Knuth and Rice (giving the asymptotics of the average height of Dyck paths of length $n$) to the case of $p$--watermelons with a wall (i.e., to a certain family of $p$ nonintersecting Dyck paths; simple Dyck p
ASYMPTOTICSOFTHEAVERAGEHEIGHTOF2–WATERMELONSWITHAWALL.3
Moreover,weshalluseIverson’snotation:
1if“someassertion”istrue,
[someassertion]=
0else.
http://www.77cn.com.cnanizationofthematerialpresented.Thispaperisorganizedasfollows:
InSection2,wepresentexactenumerationformulasfortheaverageheightofp–watermelonswithawallintermsofcertaindeterminants.Moreover,wemaketheseformulasmoreexplicit(intermsofsumsofbinomialcoe cients)forthesimplecasesp=1andp=2.
InSection3,we rstreviewtheclassicalreasoningfortheasymptoticsoftheaverageheightof1–watermelonswithawall,whichwasgivenbydeBruijn,KnuthandRice[5].Thenweshowhowthisreasoningcanbemodi edforthecaseof2–watermelonswithawall.
InappendixA,wesummarizebackgroundinformationon
–Stirling’sapproximation,
–certainresiduesandvaluesofthegammaandzetafunction,–acertaindoubleDirichletseriesandJacobi’sthetafunctionwhichareneededinourpresentation.
1.3.Acknowledgements.IamverygratefultoProfessorKr¨atzelforpointingouttomehowthepolesandresiduesofcertainDirichletseriescanbeobtainedinasimplewaybyusingthereciprocitylawforJacobi’sthetafunction,andtoChristianKrattenthalerformanyhelpfuldiscussions.
2.Exactenumeration
Forastart,wegathersomeexactenumerationresults.
2.1.Thenumberofp–watermelonswithawall.Wehavethefollowinggeneral-izationoftheenumerationof1–watermelonswithawall(i.e.,Dyckpaths)oflengthn,whichisgivenbytheCatalannumbers
C(n)=
1
Proof.ThisisaspecialcaseofTheorem6in[13].
n+2j+1 .
n(2)
2.2.1–watermelonswithawallandheightrestrictions.Inordertoobtaintheaverageheight,wecountp–watermelonswithawalloflengthnwhichdonotexceedheighth.
Tothisend,weemploythefollowingformula(see[15,p.6,Theorem2]):
We generalize the classical work of de Bruijn, Knuth and Rice (giving the asymptotics of the average height of Dyck paths of length $n$) to the case of $p$--watermelons with a wall (i.e., to a certain family of $p$ nonintersecting Dyck paths; simple Dyck p
4MARKUSFULMEK
Theorem1.Letu,dbenonnegativeintegers,andletb,tbepositiveintegers,suchthat b<u d<t.Thenumberoflatticepathsfrom(0,0)to(u+d,u d),whichdonottouchneitherliney= bnorliney=t,equals
u+d u+d