Spinning strings and integrable spin chains in the AdSCFT co(8)
发布时间:2021-06-08
发布时间:2021-06-08
In this introductory review we discuss dynamical tests of the AdS_5 x S^5 string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we argue that semiclassical string energies yield information on the quantum spectrum of the string in the
isstraightforwardinthelight-conegauge[6,7]andleadstoafree,massivetwodimensionaltheoryforthetransversedegreesoffreedom(i=1,...,8)
I2= dτdσ(1
2xixi+fermions)(10)
withacompactexpressionforthespectrum
∞
E12=λ′2(11)
n √= ∞√J
whereN
matching n:=α condition withniαi[αnistheexcitationnumberoperatorfortransversestringexcita-tionsα ni|0im ,α nj]=δnmδij.TheVirasoroconstraints(6)reducetothelevel
nnN n=0knownfromstringtheoryin atMinkowskispace-
time.Hencethe rststringyexcitationisα
Foramoredetailedtreatmentoftheplanewavenα superstringn|0 with√1+λ′n2.
see[11,12,13,14].
2.2N=4SuperYang-Mills
TheconjectureddualgaugetheoryoftheAdS5×S5superstringisthemaximallysupersymmetric(N=4)Yang-Millstheoryinfourdimensions[31,32].Its eldcontentisgivenbyagluon eldAµ(x),sixscalarsφi(x)(i=1,...,6)aswellas4Majoranagluinos,whichwechoosetowriteasa16component10dMajorana-Weylspinorχα(x)(α=1,...16).All eldsareintheadjointrepresentationofSU(N).TheactionofN=4SuperYang-Millsisuniquelydeterminedbytwoparameters,thecouplingconstantgYMandtherankofthegaugegroupSU(N)
S=2
4(F2+1
4[φ[φ1µν)i,φj]i,φj]+2χ¯Γi[φi,χ]
(12)
withthecovariantderivativeDµ= µ
Diracmatrices. i[Aµ,].Furthermore,(Γµ,Γi)aretheten
dimensional
Duetothelargeamountofsupersymmetrypresent,theconformalinvarianceoftheclassical eldtheorysurvivesthequantizationprocedure:ThecouplingconstantgYMisnotrenormalizedanditsβ-functionvanishestoallordersinperturbationtheory[33,34,35].ThisiswhyoneoftenreferstoN=4SuperYang-Millsasa“ nite”quantum eldtheory.Neverthelesscompositegaugeinvariantoperators,i.e.tracesofproductsoffundamental eldsandtheircovariantderivativesatthesamespace-point,e.g.Oi1...ik(x)=Tr[φi1(x)φi2(x)...φik(x)],arerenormalizedandacquireanomalousdimensions.Thesemaybereado fromthetwopointfunctions(statedhereforthecaseofscalaroperators)
OA(x)OB(y) =δAB