Robust wide baseline stereo from maximally stable extremal r(2)
发布时间:2021-06-07
发布时间:2021-06-07
The wide baseline stereo problem ,i.e.the problem of establishing correspondences between apair of images taken from different view points is studied.A new set of image elements that are put into correspondence,the so called extremal regions,is introduced.Extremal regions possess highly desirable properties
762J.Matasetal./ImageandVisionComputing22(2004)761–767
Reliableextractionofamanageablenumberofpoten-tiallycorrespondingimageelementsisanecessarybutcertainlynotasuf cientprerequisiteforsuccessfulwide-baselinematching.WithtwosetsofDRs,thematchingproblemcanbeposedasasearchinthecorrespondencespace[4].FormingacompletebipartitegraphonthetwosetsofDRsandsearchingforagloballyconsistentsubsetofcorrespondencesisclearlyoutofquestionforcomputationalreasons.Recently,awholeclassofstereomatchingandobjectrecognitionalgorithmswithcommonstructurehasemerged[1,3,7,9,10,13,15,18,20,21].Thesemethodsexploitlocalinvariantdescriptorstolimitthenumberoftentativecorrespondences.Importantdesigndecisionsatthisstageinclude:(1)thechoiceofmeasurementregions,i.e.thepartsoftheimageonwhichinvariantsarecomputed,(2)themethodofselectingtentativecorrespondencesgiventheinvariantdescriptionand(3)thechoiceofinvariants.Typically,DRsortheirscaledversionserveasmeasurementregionsandtentativecorrespondencesareestablishedbycomparinginvariantsusingMahalanobisdistance[14,16,21].Asasecondnoveltyofthepresentedapproach,arobustsimilaritymeasureforestablishingtentativecorrespondencesisproposedtoreplacetheMahalanobisdistance.Therobustnessoftheproposedsimilaritymeasureallowsustouseinvariantsfromacollectionofmeasurementregions,evensomethataremuchlargerthantheassociatedDR.Measurementsfromlargeregionsareeitherverydiscriminative(itisveryunlikelythattwolargepartsoftheimageareidentical)orcompletelywrong(e.g.iforientationordepthdiscontinuitybecomespartoftheregion).Theformerhelpsestablishingreliabletentative(local)correspondences,thein uenceofthelatterislimitedduetotherobustnessoftheapproach.
Findingepipolargeometry(EG)consistentwiththelargestnumberoftentative(local)correspondencesisthe nalstepofallwide-baselinealgorithms.RANSAChasbeenbyfarthemostwidelyadoptedmethodsince[19].ThepresentedalgorithmtakesnovelstepstoincreasethenumberofmatchedregionsandtheprecisionoftheEG.TheroughEGestimatedfromtentativecorrespondencesisusedtoguidethesearchforfurtherregionmatches.Itrestrictslocationtoepipolarlinesandprovidesanestimateofaf nemappingbetweencorrespondingregions.Thismappingallowstheuseofcorrelationto lteroutmismatches.Theprocesssigni cantlyincreasesprecisionoftheEGestimate;the nalaverageinlierdistance-from-epipolar-lineisbelow0.1pixel.FordetailsseeSection3.Relatedwork.Sincethein uentialpaperbySchmidandMohr[16]manyimagematchingandwide-baselinestereoalgorithmshavebeenproposed,mostcommonlyusingHarrisinterestpointsasDRs.TellandCarlsson[18]proposedamethodwherelinesegmentsconnectingHarrisinterestpointsformmeasurementregions.Themeasure-mentsarecharacterisedbyscaleinvariantFouriercoef -cients.TheHarrisinterestdetectorisstableoverarangeofscales,butde nesnoscaleoraf neinvariantmeasurement
region.Baumberg[1]appliedaniterativeschemeoriginally
proposedbyLindebergandGa
rding[6]toassociateaf ne-invariantmeasurementregionswithHarrisinterestpoints.In[10],MikolajczykandSchmidshowthatascale-invariantMRcanbefoundaroundHarrisinterestpoints.In[11],theapproachwascombinedwithBaumberg’siterationtoobtainanaf ne-invariantdetector.In[13],PritchettandZissermanformgroupsoflinesegmentsandestimatelocalhomo-graphiesusingparallelogramsasmeasurementregions.TuytelaarsandVanGoolintroducedtwonewclassesofaf ne-invariantDRs,onebasedonlocalintensityextrema[21]theotherusingpointandcurvefeatures[20].Inthelatterapproach,DRsarecharacterisedbymeasurementsfrominsideanellipse,constructedinanaf neinvariantmanner.Lowe[7]describesthe‘ScaleInvariantFeatureTransform’approachwhichproducesascaleandorientation-invariantcharacterisationofinterestpoints.
Therestofthepaperisstructuredasfollows.MSERarede nedandtheirdetectionalgorithmisdescribedinSection2.InSection3,detailsofanovelrobustmatchingalgorithmaregiven.ExperimentalresultsonoutdoorandindoorimagestakenwithanuncalibratedcameraarepresentedinSection4.Presentedexperimentsaresummar-izedandthecontributionsofthepaperarereviewedinSection5.
2.Maximallystableextremalregions
Inthissection,weintroduceanewtypeofimageelementsusefulinwide-baselinematching—theMaximallyStableExtremalRegions.Theregionsarede nedsolelybyanextremalpropertyoftheintensityfunctionintheregionandonitsouterboundary.
Theconceptcanbeexplainedinformallyasfollows.Imagineallpossiblethresholdingsofagray-levelimageI:Wewillrefertothepixelsbelowathresholdas‘black’andtothoseaboveorequalas‘white’.IfwewereshownamovieofthresholdedimagesIt;withframetcorrespondingtothresholdt;wewouldsee rstawhiteimage.Subsequentlyblackspotscorrespondingtolocalintensityminimawillappearandgrow.Atsomepointregionscorrespondingtotwolocalminimawillmerge.Finally,thelastimagewillbeblack.Thesetofallconnectedcomponentsofallframesofthemovieisthesetofallmaximalregions;minimalregionscouldbeobtainedbyinvertingtheintensityofIandrunningthesameprocess.Theformalde nitionoftheMSERconceptandthenecessaryauxiliaryde nitionsaregiveninTable1.
Inmanyimages,localbinarizationisstableoveralargerangeofthresholdsincertainregions.Suchregionsareofinterestsincetheypossesthefollowingproperties: Invariancetoaf netransformationofimageintensities. Covariancetoadjacencypreserving(continuous)trans-formationT:D!Dontheimagedomain.
上一篇:设计素描教案
下一篇:基于模块化的自动装配方法