Honeycomb Carbon A Review of Graphene 石墨烯综述(12)
发布时间:2021-06-07
发布时间:2021-06-07
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1
143
Figure20.Nanoribbonsofferenhancedtransistorbehaviorduetoquantumcon nement.(a)SEMimageofnanoribbonsde nedbyphotolithographyandO2plasmaetching.(b)Kim’sgroupdemonstratedIon/Ioffratiosashighas104atwidthsof~50nm.(Reprintedwithpermissionfromref124.Copyright2007AmericanPhysicalSociety.)
thicknessandpreventingsecondarycrystalformation.Inanidealcase,bothmethodsrelyonthenucleationandgrowthofasinglecrystalwithouttheformationofaboundaryorseedingofasecondlayer.Currently,thebestspecimenshaveavariationinthicknessofperhaps1-3layersandarepolycrystalline.FieldeffectdevicesfabricatedwithepitaxialandCVDgraphenedisplaycarriermobilitiesinexcessof1000cm2/(Vs).42,118
InthecaseofCVDgraphene,etchingoftheunderlyingmetalallowsthecarbon lmstobetransferredtoothersubstrates.This,combinedwiththelargeareaofdepositions,hasgreatpromisefortransparentconductingapplications.Onesuch lmgrownbyCVDandtransferredviaaPDMSstampontoglassshowedasheetresistanceofjust280 /)at80%opticaltransmittance.42
exfoliatedgraphenetomakethe rstsub-50nmnanoribbons(seeFigure20).123,124AlthoughtheprocessyieldedIon/Ioffratiosofupto104,devicesshowedhighvariabilityduetothelackofcontroloveredgetermination.Stencil-likepatterningwasindiscriminateofcrystallographicdirection,andthusedgeeffectswereessentiallydifferenteverytime.Thechallengeofsynthesizingreproduciblegraphenenanoribbonsisaninterestingoneforchemists,whohavesoughttoexploitthedifferencesinreactivityalonggraphene’stwocrystallographicdirections.64In2008,Dai’sgroupatStanforddevelopedthe rsttechniqueforisolatingnano-ribbonsdirectlyfrombulkgraphite(SeeFigure21).61Itinvolvedsonicationofexpandedgraphiteinthepresenceofapolymerknowntoparticipateinπ-stackingwithconjugatedcarbons.Thepolymeractedtononcovalentlyfunctionalizeandconsequentlystabilizenanoribbonsformedbymechan-icalfracture.Atomicforcemicroscopyofthenanoribbonssuggeststhatfracturefollowsnicelyalongthecrystal-lographicdirectionsofgraphene.Inthepresenceofthepolymer,theribbonscanbesuspendedinorganicsolventsandthendepositedbyspin-coating.
ElectricaltestingofDai’snanoribbonsshowedmuchgreaterconsistencythanthosemadebylithography.Aspredictedbytheory,thebandgap(Eg)ofnanoribbonswasfoundtobeinverselyproportionaltotheirwidth,withanEgof~0.4eVforspecimensfewerthan10nmwide.ThisledtoIon/Ioffratiosofupto106forthethinneststrips.Thenextmajorchallengewillbe ndingawaytoreliablydepositthenanoribbonsinprede nedlocationsforscalabledevicefabrication.
6.GrapheneNanoribbons
Amajorissuewithgraphene-basedlogicdevicesistheirpoorIon/Ioffratios.Conductivityingrapheneisminimizedunderzerogatebias,butdevicesareessentiallyimpossibletoturnoffatanyreasonabletemperaturebecausethermalenergyand uctuationsaremorethansuf cienttoproducelargecarrierpopulations.Thishigh“leakage”currentresultsinIon/Ioffratiosthataretypicallyjust1or2ordersofmagnitude,whichisinsuf cientforimplementationinrealdevices.
Whileanumberofapproacheshavebeensuggested,themoststraightforwardwaytominimizetheoffcurrentingraphene-baseddevicesistointroduceanappreciablebandgap.Thishasmotivatedagreatdealofresearchintographenenanoribbons,whicharenolongersemimetallicduetoquantumcon nement.In2007,Kim’sgroupusede-beampatterningandoxygen(O2)plasmaetchingofmechanically
7.FutureWork
Graphenehasaninterestinghistory,butmanynowwonderaboutitsfuture.Thesubjectofconsiderablescholarlydebate,itdoesseemreasonabletoassertafewthingslookingahead.First,thequalityandavailabilityof“synthetic”graphenewillcontinuetoimprove.Whetherhighqualitymaterialcomesintheformofanalternativechemicalroutetothecompleteexfoliationofgraphiteorfromoptimizationofthethermalprocessesrequiredforsubstrate-basedmethods,thereisnosignthatsynthetictechniquesarenearingtheirupperlimit.Thismeansthatdeviceengineerswillhaveampleaccesstoimprovedmaterialsfordevelopingnovelstructuresand ndingwaystointegrategrapheneintopresent-dayelectronicdevices.
Second,chemicalmodi cationofgraphene’sbasalplaneoritsedgeswillsubstantiallyin uencegraphene-baseddevices.Forelectronicapplications,onecanimaginethe
Figure21.Solution-basedmethodforproducinggraphenenanoribbons.(a)Dai’sgroupusedπ-stackingpolymeragentstostabilizenanoribbonsinsolution.(b)Afterspin-coating,ribbonsranginginwidthdownto10nmwerelocatedbyatomicforcemicroscopy.(c)Ion/Ioffratiosupto106weredemonstrated.[ReprintedwithpermissionfromScience(),ref61.Copyright2008AmericanAssociationfortheAdvancementofScience.]
上一篇:有理数易错题练习(人教新课标)
下一篇:房地产英语词汇大全