2015高中数学 1.7定积分的简单应用错解总结 新人

发布时间:2021-06-06

定积分的简单应用错解总结

用定积分求曲边形的面积时,不判断曲边图形位于x轴上方,还是下方,直接求解而出现错误,下面通过实例探究避免出错的措施:

一、具体措施:

⑴当对应的曲边图形位于x轴上方时,定积分的值取正值,且等于曲边图形的面积; ⑵当对应的曲边图形位于x轴下方时,定积分的取负值,且等于曲边图形面积的相反数;

⑶当位于x轴上方的曲边图形面积等于位于x轴下方的曲边图形面积时,定积分的值为0,且等于位于x轴上方的曲边图形面积减去位于x轴下方的曲边图形的面积.

二、错例体验:

例1 求曲线y sinx与直线x

5 5,x ,y 0所围成的图形的面积.

245 错解:所求面积为 sinxdx cosx| . 2

错解分析:当对应的曲边梯形位于x轴下方时,定积分的值取负值,此时曲边梯形的面积等于定积分的相反素,本题中求曲线与直线所围成的图形的面积时应先判断曲线在x轴上方还是下方,否则求出的面积是错误的.

正解:所以围成的图形的面积:

S sinxdx sinxdx sinxdx sinxdx 1 2 1 4 0 0 练习、求正弦曲线y sinx与余弦曲线y cosx,在x 到x

积. 解析:当x 345 间围成图形的面4 3 5 , 时,cosx sinx,当x , 44 44

1 5 时,cosx sinx, 所以所求面积为S cosx sinx dx sinx cosx dx 3 2 5 sinx cosx dx 2

cosx sinx | 5

∴所围成的曲边图形的面积为点评:本题中先判断了在x

3 , 上正弦函数与余弦函数的大小关系,在具体利 44 1

2015高中数学 1.7定积分的简单应用错解总结 新人.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219