解决问题的策略(替换)(3)
发布时间:2021-06-06
发布时间:2021-06-06
2.引发思考,激起尝试的欲望。启发提示:这里6个小杯和1个大杯的果汁才是720毫升,要求小杯和大杯的容量两个问题,能直接求吗?能否将大杯容量与小杯容量两个量与总量720毫升的关系转化成其中一个量与总量的关系呢?
(二)组织学生合作交流,先议一议怎样用替换的策略解决问题?再尝试列式计算。
(三)汇报尝试情况,归纳用替换的策略解决问题的方法。指名学生汇报自己的想法,板演出算式,并讲一讲每步式子的意义。
借助媒体演示总结:
1.大杯换成小杯或小杯换成大杯的依据是什么?
2.把大杯换成小杯:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?也就是说9个小杯容量是720毫升,那就可以先求出每个小杯的容量。
3.把小杯换成大杯:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢? 720毫升果汁可以倒3个大杯。可以先求出每个大杯的容量。
(四)检验。师引导:验证求出的结果是否正确,想一想可以怎么检验?
①把6个小杯的容量和1个大杯的容量加起来,看它是否等于720毫升;
②还要检验大杯的容量是不是小杯容量的3倍。(板书检验过程) 总之,检验时要看所求出来的结果是否符合题目中的两个已知条件。
(五)小结:替换的关键就是把两种杯子替换成一种杯子。得出依据倍数关系进行替换,果汁总量不变、杯子的数量变了。
数学活动二:
将例1中大、小杯的倍数关系改为“大杯比小杯多20毫升”你还会替换吗?
1.议一议,这时还能不能替换?
2.讨论如果将7个杯子全看作小杯(或大杯)果汁的总量还是720毫升吗?是变多了还是变少了?
3.试列式解答。
4.小结与例一不同之处:根据大小杯的相差数进行替换时,总量变了,杯子数没有变。