Literature Review 英文文献综述模板(3)
发布时间:2021-06-06
发布时间:2021-06-06
IEEE标准格式
input-knowledgeaccuracy.However,theuseofself-containeddatabaseiscostly,thatonlyfewinstitutionscanaffordthehardwareexpense,whichmakestheapplicationofWatsonexpensive.Anotherlimitationisthatthestructuredresourceisrelativelynarrowcomparedwithvastunstructurednatural-languagetexts.Oneofthepossibleimprovementistouseonlinedataandordinaryonlinesearchengineto ndpossiblerelatedarticlesandanalyzethemwithPCclients.Despitethetradeoffbetweenaccuracyandcost,becauseofthepossibletheunrealdataandincorrectinformationonline,itmakesthetechniquemorerealizableingeneral.
[4]V.Hatzivassiloglou,J.Klavans,andE.Eskin,DetectingText
SimilarityOverShortPassages:ExploringLinguisticFeatureCombinationsViaMachineLearning,JointSIGDATConferenceonEmpiricalMethodsinNaturalLanguageProcessingandVeryLargeCorpora,2000.
[5]K.Nigam,TextClassi cationfromLabeledandUnlabeledDoc-umentsusingEM,MachineLearning,Volume39,pp-103134,2000.
[6]E.Liddy,NaturalLanguageProcessing,InEncyclopediaof
LibraryandInformationScience,2ndEd.NY.MarcelDecker,Inc,2001.
[7]S.TongandD.Koller,SupportVectorMachineActiveLearning
withApplicationstoTextClassi cation,JournalofMachineLearningResearchpp-45-66,2001.
[8]F.Sebastiani,MachineLearninginAutomatedTextCategoriza-tion,ACMComputingSurveys(CSUR),Issue1,Volume34,pp-1-47,2002.
[9]P.SoucyandG.Mineau,FeatureSelectionStrategiesforText
Categorization,AI2003,LNAI2671,pp-505-509,2003.
[10]X.Han,G.Zu,W.Ohyama,T.Wakabayashi,andF.Kimura,
AccuracyImprovementofAutomaticTextClassi cationBasedonFeatureTransformationandMulti-classi erCombination,LNCS,Volume3309,pp.463-468,Jan2004.
[11]M.Ikonomakis,S.Kotsiantis,V.andTampakas,TextClassi ca-tionusingMachineLearningTechniques,WSEASTransactionsonComputers,Issue8,Volume4,pp-966-974,2005.
[12]R.CollobertandJ.Weston,uni edarchitecturefornaturallan-guageprocessing:deepneuralnetworkswithmultitasklearning,ICML’08Proceedingsofthe25thinternationalconferenceonMachinelearning,ACMNewYork,USA,Pages160-167,2008.[13]R.Collobert,J.Weston,L.Bottou,M.Karlen,K.Kavukcuoglu,
andP.KuksaNaturalLanguageProcessing(Almost)fromScratch,JournalofMachineLearningResearch,Volume12,pp-2493-2537,2011.
[14]A.Gliozzo,O.Biran,S.Patwardhan,andK.McKeown,Seman-ticTechnologiesinIBMWatson,The10thInternationalSemanticWebConference,Bonn,Germany,2011.
[15]D.Ferrucci,Introductionto“ThisisWatson”,IBMJournalof
ResearchandDevelopment,Volume56Number3/4,pp-1:1-1:15May/July2012.
[16]G.Tesauro,D.Gondek,J.Lenchner,J.Fan,andJ.Prager,
Simulation,learning,andoptimizationtechniquesinWatsonsgamestrategies,IBMJournalofResearchandDevelopment,Volume56,Number3/4,pp-16:116:11,2012.
V.CONCLUSION
Ascanbeseenfromthecontentabove,mosttechniquesusedintextanalysisarebasedon‘wordfeature’extraction,wordtypes,andrelations,whichareallsemantictechniques.WhileWatsonalsousessearchingtechniquesto ndtheexactanswershownintext.However,themachineslacktheabilitytoconcludethemainideainaparagraph,whichismorerelatedwithabstractlogicthinking.Whilethewaythathumanreadconcernsnotonlyonvocabulariesandmeanings,butalsothestructureofparagraphandthelocationofsentences,forexample,the rstsentenceintheparagraphusuallyguidesthefollowingcontent,whichhelpstellthesigni canceofthesentencesandwords.Therefore,usingmachinelearningtoanalyzethestructureofanarticleandcombiningwiththemeaningofeverysentencemightgeneratetheabilitytoconcludethemainidea,whichcanbeusedintextscanningandclassi cation.
REFERENCES
[1]S.Dumais,J.Platt,D.Heckerman,andM.Sahami,Inductive
LearningAlgorithmsandRepresentationsforTextCategoriza-tion,ProceedingsoftheseventhinternationalconferenceonInformationandknowledgemanagement,pp-148-155,1998.[2]T.Joachims,TextCategorizationwithSupportVectorMachines:
LearningwithManyRelevant,ECML-98Proceedingsofthe10thEuropeanConferenceonMachineLearning,pp-137-142,1998.[3]T.Joachims,TransductiveInferenceforTextClassi cationusing
SupportVectorMachines,InternationalConferenceonMachineLearning(ICML),pp-200-209,1999.
3
上一篇:高一语文必修二重点