北京林业大学 2013年《数学分析》考试大纲 考试(3)
发布时间:2021-06-06
发布时间:2021-06-06
北京林业大学 考研真题 报录比 招生简章 招生目录 招生人数 报考难度 就业情况 考研重点 考研真题 考研经验 考研参考书 考研辅导 复试分数线
8.不定积分
(1)原函数与不定积分的概念,基本积分表,线性运算法则
(2)换元积分法,分部积分法
(3)有理函数的积分法。可化为有理函数的某些类型函数的积分
要求:掌握原函数与不定积分概念、不定积分的运算法则;掌握换元积分法与分部积分法、分解有理函数为部分分式的方法;掌握某些可有理化函数的不定积分的求法。
9.定积分
(1)定积分的概念,牛一莱定理
(2)可积的必要条件,达布上下和,可积的充要条件,可积函数类
(3)定积分的性质:线性性质,区间可加性,单调性,绝对可积性,积分第一、第二中值定理
(4)微积分学基本定理。换元积分法与分部积分法。泰勒公式的积分型余项
要求:深刻理解定积分的概念与意义。理解可积分的必要条件、充要条件,初步掌握判断函数是否可积的基本方法;熟练掌握定积分的性质,并能用它证明某些有关问题;深刻理解微积分学基本定理的意义,并具有应用它证明有关定积分问题的能力;熟练掌握与应用牛一莱公式,熟练掌握计算定积分的基本方法和技巧。
10.定积分的应用
(1)平面图形之面积,由截面之面积求立体体积
(2)平面曲线的弧长与曲率,旋转曲面的面积
(3)功,液体的压力,引力
要求:熟练地应用定积分来计算平面图形的面积,曲线弧长及曲率,旋转体的表面积与体积,以及掌握由截面面积函数求体积的基本方法;能运用定积分解决某些物理问题。
11.反常积分
(1)无穷限反常积分
(2)无界函数的反常积分
要求:深刻理解反常积分的各类收敛性概念,掌握反常积分的收敛判别法。
12.数项级数
(1)级数的收敛性与和的概念,柯西收敛准则,收敛级数的基本性质
(2)正项级数收敛性的一般判别法,比式判别法与根式判别法,积分判别法
(3)绝对收敛与条件收敛,交错级数,莱布尼兹判别法,阿贝尔判别法与狄利克雷判别法
要求:掌握级数敛散性定义及意义,熟练掌握级数敛散性判别法;掌握收敛级数与绝对收敛级数的性质,具有应用级数收敛性定义和收敛级数的性质证明级数中一些理论问题的能力。
33/8
【育明教育】中国考研考博专业课辅导第一品牌官方网站:
下一篇:柘沟小学教师培训需求调研报告