Nonlinear Least Squares Optimisation of Unit Quaternion Func
发布时间:2021-06-06
发布时间:2021-06-06
Pose estimation from an arbitrary number of 2-D to 3-D feature correspondences is often done by minimising a nonlinear criterion function using one of the minimal representations for the orientation. However, there are many advantages in using unit quatern
InProc.14thInt.Conf.PatternRecognition,Brisbane,Australia,pp.425-427,August1998.
NonlinearLeastSquaresOptimisationofUnitQuaternionFunctionsforPose
EstimationfromCorrespondingFeatures
AleˇsUde
JoˇzefStefanInstitute,DepartmentofAutomatics,BiocyberneticsandRobotics
Jamova39,1000Ljubljana,Slovenia,E-mail:ales.ude@ijs.si
Abstract
Poseestimationfromanarbitrarynumberof2-Dto3-Dfeaturecorrespondencesisoftendonebyminimisinganonlinearcriterionfunctionusingoneoftheminimalrep-resentationsfortheorientation.However,therearemanyadvantagesinusingunitquaternionstorepresenttheori-entation.Unfortunately,astraightforwardformulationoftheposeestimationproblembasedonquaternionsresultsinaconstrainedoptimisationproblem.Inthispaperweproposeanewmethodforsolvinggeneralnonlinearleastsquaresoptimisationproblemsinvolvingunitquaternionfunctionsbasedonunconstrainedoptimisationtechniques.Wedemonstratetheeffectivenessofourapproachforposeestimationfrom2-Dto3-Dlinesegmentcorrespondences.
1.Introduction
Theobjectposeisde nedasthedisplacementoftheco-ordinateframerigidlyattachedtotheobjectfromitsini-tialposition,whereitisalignedwiththeworldcoordinateframe,toitscurrentposition.Thereexistanalyticalandlin-earsolutionstotheproblemofposeestimationfrom2-Dto3-Dfeaturecorrespondences[1,2],buttheyaresensitivetonoise.Inthepresenceofnoise,whichisunavoidableinreal-worldapplications,algorithmsbasedonnonlinearop-timisationmethodsgivemoreaccurateresults.
Nonlinearoptimisationtechniqueshavebeenusedforposeestimationbymanyresearchersinthepast.Agoodoverviewisgivenin[1].Inmostoftheseapproaches,Eu-ler’sangleswereusedtoparameterisethegroupofrotationsSO(3)oftheEuclideanspace.However,itiswellknownthatSO(3),whichisathreedimensionalmanifold,cannotbegloballyembeddedinthethreedimensionalEuclideanspace.Itfollowsthatiftherotationgroupisrepresentedbythreerealparameters,theEuclideanmetrictopologyin
Currently,
theauthoriswiththeKawatoDynamicBrainProject,ER-ATO,JapanScienceandTechnologyCorporation,2-2HikaridaiSeika-cho,Soraku-gun,Kyoto619-0288,Japan,e-mail:ude@erato.atr.co.jp.
R3doesnotinduceaglobaltopologyandmetricstructureinSO(3).Thissuggeststhatcommonsolutionsusingminimalrepresentationsoftherotationgrouparenotideal.
Therepresentationoftherotationgroupbyunitquater-nions,whichformasphereS3inR4,hasmanyadvantagesoverminimalrepresentations.Methodsforposeestimationbasedonthequaternionrepresentationoftheorientationhavebeenproposedintheliteraturebefore[1],buttheposeestimationproblemhasbeenformulatedasanoptimisationprobleminR4ratherthanonS3intheseapproaches.
2.Preliminaries
3
Inthefollowingweshallneedtheexponentialmapexp:R→S3,which isgivenexp(r)=
by
cos( r ),sin( r )
r
,r=0.(1)(1,0,0,0),r=0
r
Theexponentialmaptransformsatangentvectorr∈R3T∈S3≡1(S3)intoq,whereqisapointatdistance r from1alongageodesiccurvestartingfrom1inthedirectionofr[3].Geodesicsarede nedasshortestpathsconnectinganytwopointsonamanifold3(sphereS3).Itturnsoutthatforanyotherpointq∈Sandforanyr∈T3S)3≡R3andtheexponentialq∈Tmapatq(S3),rq,expq qT(S3)1(S→,havingtheabovepropertiesisgivenby
q:qexpq(rq)=exp(rq q) q,
(2)
where denotesthequaternionmultiplication.
Letsconsidertheproblemofposeestimationfrom2-Dto3-Dlinesegmentcorrespondences.Letm(x1k,x2
k=
k),k=1,...,N,betheend-pointsofthek-th3-Dlinesegmentbelongingtotheobject’smodelandletAj,j=1,...,M,betheprojectivemappingontothej-thimageplane.Thesemappingsshouldbemadeavailablebyacameracalibrationprocedure.Letfdenotethemappingwhichtransformstheend-pointrepresentationofa2-Dlinesegmentintoitsmid-point f(v,vvTT
representation T12)=1+v22,arctan
y2 y1
x2 x1
,(3)