高一数学(必修5必修2)试题
时间:2025-07-10
时间:2025-07-10
高一数学(必修5必修2)试题
http://
常州市2007—2008学年度第二学期期末质量调研 高一数学(必修5必修2)试题 2008年7月
命题单位:常州市教育教研室
一、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请把答案填写
在题中横线位置上.
1 y 0的倾斜角等于. 2.函数f(x) lg(x2 1)的定义域
为 . 3.圆心是( 2,3),且经过原点的圆的标准方程
为 . 4.如果直线mx 2y 1 0与x y 2 0互相垂直,那么实数m= .
5.已知△ABC的三个顶点A(3,3,2),B(4, 3,7),C(0,5,1),则BC 边上的中线长等于 .
6.已知等差数列 an 的首项a1 1,a1 a2 a3 12,则 an 的公 差d= .
7.正方体ABCD A1B1C1D1中,异面直线A1B和DC1所成角的大小为 .
8.设a,b,g为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题: ①若m a,n a,m//b,n//b,则a//b; ②若a//b,l a,则l//b; ③若a
b l,b
g m,g
a n,l//m,则 m//n;
④若a g,b g,则a//b;
则其中所有正确命题的序号是 . 9.一个空间几何体的主视图、左视图、俯视图为直角三角形,边 长如右图所示,那么该几何体的体积为 .
高一数学(必修5必修2)试题
http://
10.棱长为1的正方体外接球的表面积为 x y≤3
11.已知实数x、y满足约束条件 y≥1,则z x2 y2的最小值
x≥1
为 .
12.设正数x、y满足2x y 20,则lgx lgy的最大值为 13.若直线y=x+m与曲线x有且只有一个公共点,则实数m的取值范围
是 .
14.汽车轮胎的磨损与汽车行驶的距离成正比,已知某品牌的前轮轮胎可行驶的里程为m
千米,后轮轮胎可行驶n千米,m n.若在行驶一定的里程之后,将前后的两对轮胎互换,则可增加行驶的里程数,那么一套新的轮胎最多可以保证行驶的里程是 千米.
二.解答题:本大题共6小题,共58分.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分8 分)
如图,P,Q,R分别是三棱椎A—BCD的棱AC,BC,BD的中点,过三点P,Q,R 的平面交AD于S.
求证:四边形PQRS是平行四边形.
16.(本小题满分8 分)
高一数学(必修5必修2)试题
http://
(1)已知直线l过点P(3,4),它在y轴上的截距是在x轴上截距的2倍,求直线l的方程.
(2)求与圆C:x2 y2 2x 4y 1 0同圆心,且与直线2x–y+1=0相切的圆的方程.
17.(本小题满分 10分)
设等差数列 an 的前n项和为Sn, 已知a3 5,S3 9. (1)求 an 的首项a1和公差d的值; (2)若bn a2n,求数列 bn 的前n项和.
18.(本小题满分10 分)
若关于x的不等式x2 4x 4 m2≤0在[-1,3]上恒成立,求实数m的取值范围.
高一数学(必修5必修2)试题
http:// 19.(本小题满分10 分)
如图,在正方体ABCD A1B1C1D1中,F为AA1的中点. 求证:(1)AC//平面FBD;(2)平面FBD 平面DC1B. 1
20.(本小题满分 12 分)
已知圆C:(x 3)2 (y 4)2 4,直线l1过定点 A (1,0). (1)若l1与圆C相切,求l1的方程; (2)若l1的倾斜角为
p
,l1与圆C相交于P,Q两点,求线段PQ的中点M的坐标; 4
(3)若l1与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时l1的直线方程.
高一数学(必修5必修2)试题
http://
常州市2007—2008学年度第二学期期末质量调研 高一数学(必修5必修2)试题答案
一.填空题:
1200 2.1.3 x|x 1,或x 1 3.(x 2)2 (y 3)2 13 4. 2 5.3p 11.6.3 7.900 8.②③ 9.1 10.2
12.1 lg5 13.0 m≤2或m 1 14.2mn
m n
二.解答题: 15.证明:
∵P为AC的中点,Q 为BC的中点, ∴PQ∥AB,且PQ=1
2
AB. …………………………………………1分 又
PQ 平面PQRS,AB 平面PQRS,
∴AB∥ 平面PQRS. …………………………………………3分 平面PQRS
平面ABD RS,AB 平面ABD,
∴AB∥RS. …………………………………………5分 ∵R为BD中点,
∴S为AD中点. …………………………………………6分 ∴RS∥AB,且RS=
1
2
AB. ∴RS∥PQ,且RS=PQ.
∴PQRS为平行四边形. …………………………………………8分 16.解:
(1)当直线l过原点时,斜率k=
43,直线方程为y 4
3
x. ………………2分 (2)当直线l不过原点时,设直线方程为xy
a 2a
1. 3a 42a
1,a 5
直线方程为2x y 10.
高一数学(必修5必修2)试题
http:// ∴所求直线l方程为y (2)
x2 y2 2x 4y 1 0, (x 1)2 (y 2)2 4, 圆心C为(1, 2).
所求圆与直线2x y 1 0相切, r
所求圆的方程为(x 1)2 (y 2)2 5.
6分
4
x或2x y 10.3
4分
8分
a1 2d 5,
…………………………………3分 17解: (1) a3 5,S3 9,
3a1 3d 9. a1 1,
…… ……………………………………………………………5 分 解得 d 2.
(2)
an 1 2(n 1) 2n 1. bn 2 2n 1 2n 1 1. …… 此处隐藏:1370字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:任务4(1).物流网络系统