Simulations of the Sunyaev-Zeldovich Effect from Quasars
发布时间:2024-11-25
发布时间:2024-11-25
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
Mon.Not.R.Astron.Soc.000,000–000(0000)Printed2August2008
A(MNLTEXstyle lev2.2)
SimulationsoftheSunyaev-ZeldovichE ectfromQuasars
1212
SuchetanaChatterjeeTizianaDiMatteo,ArthurKosowsky&IntiPelupessy1
DepartmentofPhysicsandAstronomy,UniversityofPittsburgh,Pittsburgh,PA15260USA
CenterforCosmology,CarnegieMellonUniversity,Pittsburgh,PA15213USA
arXiv:0808.0268v1 [astro-ph] 2 Aug 2008
2McWilliam’s
2August2008
ABSTRACT
Quasarfeedbackhasmostlikelyasubstantialbutonlypartiallyunderstoodimpactontheformationofstructureintheuniverse.ApotentialdirectprobeofthisfeedbackmechanismistheSunyaev-Zeldoviche ect:energyemittedfromquasarheatsthesur-roundingintergalacticmediumandinduceadistortioninthemicrowavebackgroundradiationpassingthroughtheregion.Hereweexaminetheformationofsuchhotquasarbubblesusingacosmologicalhydrodynamicsimulationwhichincludesaself-consistenttreatmentofblackholegrowthandassociatedfeedback,alongwithradiativegascoolingandstarformation.Fromthissimulation,weconstructmicrowavemapsoftheresultingSunyaev-Zeldoviche ectaroundblackholeswitharangeofmassesandredshifts.Thesizeofthetemperaturedistortionscalesapproximatelywithblackholemassandaccretionrate,withatypicalamplitudeuptoafewmicro-Kelvinonangularscalesaround10arcseconds.Wediscussprospectsforthedirectdetectionofthissignalwithcurrentandfuturesingle-dishandinterferometricobservations,in-cludingALMAandCCAT.Thesemeasurementswillbechallenging,butwillallowustocharacterizetheevolutionandgrowthofsupermassiveblackholesandtheroleoftheirenergyfeedbackongalaxyformation.
Keywords:cosmicmicrowavebackground–intergalacticmedium–galaxies:active.
1INTRODUCTION
Thetemperature uctuationsinthecosmicmicrowavebackground,asmeasuredbytheWilkinsonMicrowaveAnisotropyProbe(WMAP)satellite(Bennettetal.2003)andnumerousothermicrowaveexperiments(e.g.,Dawsonetal.2002;Rajguruetal.2005;Reichardtetal.2008)haveproventobethesinglemostpowerfultoolinconstrainingcosmology(Spergeletal.2007).Thetemperatureanisotropyhasbeenmappedwithlargestatisticalsigni canceonangu-larscalesdowntoaroundaquarterdegree,wherethedom-inantphysicalmechanismscontributingtothe uctuationsarisefromdensityperturbationsattheepochofrecombina-tion.Attentionisnowturningtoarcminuteangularscales,wheretemperature uctuationsariseduetointeractionofthemicrowavephotonswithmatterinthelow-redshiftuni-verse(forabriefreview,seeKosowsky2003).Theselow-redshiftandsmall-angleanisotropiesarecollectivelyknownas“secondaryanisotropies”inthemicrowavebackground.ThemostprominentamongthemistheSunyaev-Zeldovich(SZ)e ect(Sunyaev&Zeldovich1972)fromtheinverseComptonscatteringofthemicrowavephotonsduetohotelectrons.TheSZe ectprovidesapowerfulmethodfordetectingaccumulationsofhotgasintheuniverse(Carl-stromHolder&Reese2002).Galaxyclusters,whichcon-tainthemajorityofthethermalenergyintheuniverse,
providethelargestSZsignal;clusterswere rstdetectedthiswaythroughpioneeringmeasurementsoverthepastdecade(e.g,Marshalletal.2001)andthousandsofthemwillbedetectedbytheupcomingSZsurveysliketheAta-camaCosmologyTelescope(ACT)(Kosowskyetal.2006)andtheSouthPoleTelescope(SPT)(Ruhletal.2004).However,anumberofotherastrophysicalprocesseswillalsocreateSZdistortions.ThisincludesSZdistortionfrompe-culiarvelocitiesduringreionization(McQuinnetal.2005,Illievetal.2006),supernova-drivengalacticwinds(Majum-dar,Nath,&Chiba2001),blackholeseededproto-galaxies(Aghanim,Ballad&Silk2000),kineticSZfromLymanBreakGalaxyout ow(Babich&Loeb2007),e ervescentheatingingroupsandclustersofgalaxies(Roychowdhury,Ruszkowski&Nath2005)andsupernovafrom rstgenera-tionofstars(Oh,Cooray,&Kamionkowski2003).TheSZdistortioningalacticscales(hotprotogalacticgas)havebeenstudiedbydi erentauthors(e.g,deZottietal.2004,Rosa-Gonz’alezetal.2004,Massardietal.2008).HereweinvestigateonegenericclassofSZsignals:thehotbubblesurroundingaquasarpoweredbyasupermassiveblackhole.ProbingblackholeenergyfeedbackviaSZdistortionsisonedirectobservationalroutetounderstandingthegrowthandevolutionofsupermassiveblackholesandtheirroleinstruc-tureformation.Analyticstudiesofthissignalhavebeendonebyseveralauthors(e.g.,Natarajan&Sigurdsson1999;
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
2Chatterjeeetal.
D4
D6(BHCosmo)33.7533.75
2×21632×48632.75×1082.75×1074.24×1074.24×106
6.252.730.001.00
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
QuasarSZSimulations
3
Figure1.Simulatedy-distortionmapsaroundtwomassiveblackholes,atthreedi erentredshifts;left,middle,andrightcolumnsareforz=3,z=2,andz=1.Thetoptworowsareforthemostmassiveblackholeinthesimulation,withmass7.35×108M⊙,2.76×109M⊙and4.26×109M⊙atredshifts3,2,and1respectively.Thetoprowshowsyina5Mpcsquareregioncenteredontheblackhole;thesecondrowshowszoomsintoasmallerregion200kpcsquare.Notethetworowshavedi erentcolorscales.Thethirdandfourthrowsarethesameasthe rsttworows,foradi erentblackhole(thesecondmostmassiveblackholeatredshift3.0)withmass7.15×108M⊙,8.2×108M⊙and2.11×109M⊙atredshifts3,2,and1.Forbothblackholes,thepeakvalueofyisbetween10 7and10 6,correspondingtoane ectivemaximumtemperaturedistortionbetweenafewtenthsofaµKtoafewµK.
lationbetweenblackholemassandSZdistortion.Thecon-cludingSectionestimatesdetectabilityofthesesignalsandsummarizesfutureprospects.Throughoutweuseunitswithc=kB=1.
2SIMULATION
ThenumericalcodeusesastandardΛCDMcosmologicalmodelwithcosmologicalparametersfromthe rstyear
WMAPresults(Spergeletal.2003).Thecosmologicalpa-rametersare m=0.3, Λ=0.7,H0=70km/sMpc 1andGaussianinitialadiabaticdensityperturbationswithaspectralindexns=1andnormalizationσ8=0.9.(Whilethecurrentlowervalueofσ8willa ectthetotalnumberofblackholesinagivenvolume,itshouldhavelittleimpactontheresultsforindividualblackholespresentedhere.)Thesimulationusesanextendedversionoftheparallelcos-mologicalTreeParticleMesh-SmoothedParticleHydrody-
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
4Chatterjeeetal.
Mostmassiveblackhole
Secondblackhole
Table2.Theaccretionratesandthenumberofneighboringblackholeswithinaradiusof100kpc,forthetwoblackholesinFig.1.
namicscodeGADGET2(Springel2005).GasdynamicsaremodeledwithLagrangiansmoothedparticlehydrodynamics(SPH)(Monaghan1992);radiativecoolingandheatingpro-cessesarecomputedfromtheprescriptiongivenbyKatz,Weinberg,&Hernquist(1996).Therelevantphysicsofstarformationandtheassociatedsupernovafeedbackhasbeenapproximatedbasedonasub-resolutionmultiphasemodelfortheinterstellarmediumdevelopedbySpringel&Hern-quist(2003a).
AdetaileddescriptionoftheimplementationofblackholeaccretionandtheassociatedfeedbackmodelisgiveninDiMatteoetal.2008.Blackholesarerepresentedascolli-sionless“sink”particlesthatcangrowinmassbyaccretinggasorbymergerevents.TheBondi-Hoylerelation(Bondi1952;Bondi&Hoyle1944;Hoyle&Lyttleton1939)isusedtomodeltheaccretionrateofgasontoablackhole.Theac-223/2˙BH=4π[G2MBHcretionrateisgivenbyMρ]/(c2,s+v)
whereρandcsaredensityandspeedofsoundofthelo-calgas,visthevelocityoftheblackholewithrespecttothegas,andGisthegravitationalconstant.Theradiated
˙BHc2)whereη=0.1luminosityistakentobeLr=η(M
isthecanonicale ciencyforthindiskaccretion.Itisas-sumedthatasmallfractionoftheradiatedluminositycou-plestothesurroundinggasasfeedbackenergyEf,suchthat˙f= fLTwiththefeedbacke ciency ftakentobe5%.E
Thisfeedbackenergyisputdirectlyintothegassmoothingkernelatthepositionoftheblackhole(DiMatteoet.al2008).Thee ciency fistheonlyfreeparameterinourquasarfeedbackmodel,andischosentoreproducetheob-servednormalizationoftheMBH σrelation(DiMatteo,Springel&Hernquist2005).ThisnumberisalsoconsistentwiththepreheatingingroupsandclustersthatisrequiredtoexplaintheirX-rayproperties(Scannapieco&Oh2004).Thefeedbackenergyisassumedtobedistributedisotropi-callyforthesakeofsimplicity;howevertheresponseofthegascanbeanisotropic.Thismodelofquasarfeedbackasisotropicthermalcouplingtothesurroundinggasislikelyagoodapproximationtoanyphysicalfeedbackmechanismwhichleadstoashockfrontwhichisotropizesandbecomeswellmixedoverphysicalscalessmallerthanthoserelevanttooursimulationsandontimescalessmallerthanthedy-namicaltimeofthegalaxies(seeDiMatteoetal.2008andHopkins&Hernquist2006formoredetaileddiscussions).Inactualactivegalaxies,theaccretionenergyisoftenreleasedanisotropicallythroughjets.Asradiogalaxylobescanhavesubstantialseparations,itisconceivablethatactualhotgasbubblemorphologycoulddi ersomewhatfromthatinthesimulations.Thisdi erenceneedstobeinvestigatedwithfurthersimulations,buttheoveralldetectabilityofthesig-naldependsprimarilyonitsamplitudeandcharacteristic
angularscale,whicharedeterminedmainlybythetotalen-ergyinjectionasafunctionoftime.Theresultsforthesig-nalsanddetectabilitypresentedhereareunlikelytodi ersigni cantlyduetomoredetailedmodelingoftheenergyinjectionmorphology.
Theformationmechanismfortheseedblackholeswhichevolveintotheobservedsupermassiveblackholestodayisnotknown.Thesimulationcreatesseedblackholesinhaloeswhichcrossaspeci edmassthreshold.Atagivenredshift,haloesarede nedbyafriends-of-friendsgroup nderalgorithmrunonthe y.ForanyhalowithmassM>1010h 1M⊙whichdoesnotcontainablackhole,thedensestgasparticleisconvertedtoablackholeofmassMBH=105h 1M⊙;theblackholethengrowsviatheaccre-tionprescriptiongivenaboveandbye cientmergerswithotherblackholes(DiMatteoetal.2008).Thesimulationsusedinthispaperhaveaboxsizeof33.75h 1Mpcwithpe-riodicboundaryconditions.Thecharacteristicsofthesim-ulationarelistedinTable1,whereNpisthetotalnumberofdarkmatterplusgasparticlesinthesimulation,mDMandmgasaretheirrespectivemasses, givesthecomovingsofteninglength,andzendisthe nalredshiftoftherun.Forredshiftslowerthan1,thefundamentalmodeintheboxbe-comesnonlinear,solarge-scalepropertiesofthesimulationareunreliableafterz=1.ThecurrentresultsarederivedfortheD4runwith2×2163particles;wewillpresentbriefcomparisonswiththehigher-resolutionD6(BHCosmo)runtodemonstratethatourresultsarereasonablyindependentofresolution.
Adi erentsimulationandfeedbackmodelhaverecentlybeenusedbyScannapieco,Thacker&Couchman(2008)tostudythesameissues.Theyassociatetheremnantcircularvelocitywithinapostmergereventwithblackholemass.ThetimescaleonwhichtheblackholeshinesatitsEd-dingtonluminosityisassumedtobea xedfractionofthedynamicaltimescaleofthesystem;thetimescaleandblackholemassscaleareusedtoestimatetheenergyoutputfromablackhole.Theirfeedbackenergye ciencyintotheinter-galacticmediumis5%,consistentwiththeassumptioninoursimulation.Incontrast,oursimulationtracksthetime-varyingfeedbackfromagivenblackholeduetochanginglocalgasdensityasthesurroundingcosmologicalstructureevolves.Thissimulationo ersthepossibilityoftrackingtheaccretionhistoryanddutycycleofblackholeemissionforindividualblackholes,whichweplantoaddressinfuturework.
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
QuasarSZSimulations
5
Figure2.Thedi erenceiny-distortionbetweenasimulationwithblackholefeedbackandasimulationwithout,forthesameregionofspaceshowninFig.1.Thetwosimulationshaveidenticalresolutionandinitialconditions.The rstrowcorrespondstothemostmassiveblackholeatz=3,thesecondrowatz=1;thethirdrowcorrespondstotheotherblackhole(secondmostmassiveblackholeatredshift3.0)inFig.1atz=3,thefourthrowatz=1.Theleftcolumnshowsy,themiddleshowsthelogofthemass-weightedaveragetemperatureinunitsofKelvin.Therightcolumnshowsthelogoftheelectronnumbersurfacedensityinunitsofcm 2.
3RESULTSFROMTHESIMULATIONS
y=2
dlσTne
Te
3.1TheSunyaev-ZeldovichDistortionandMaps
TheComptony-parametercharacterizingthenon-relativisticthermalSZspectraldistortionisproportionaltotheline-of-sightintegraloftheelectronpressure:
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
6Chatterjeeetal.
Figure3.Theangularpro lesoftheydistortionforthetwoblackholesshowninFig.1atthreedi erentredshifts.Thesolid,dot-dashedanddashedlinesareforredshifts3,2,and1respectively.Theleftpanelshowsthemostmassiveblackholeandtherightpanelistheotherblackhole(secondmostmassiveblackholeatredshift3.0).Althoughthecentralamplitudeataparticulartimedependsstronglyontheinstantaneousstateoftheblackholeaccretion,thedistortionamplitudeincreasesmonotonicallywithtimeata20arcsecondangulardistance.
Figure4.Thedi erenceinthey-distortionradialpro lewithandwithoutblackholefeedback,forthetwoblackholesshowninFig.1.Theleftpanelisforthemostmassiveblackholeandtherightpanelisforthesecondblackhole(secondmostmassiveblackholeatredshift3.0).Foreach,thedashedlineisthefractionalchangeintheydistortionwithrespecttothenoblackholecaseatz=1;thesolidlineisatz=3.
3.02.01.0237831103404127336404logy=0.56log(MBH/M⊙) 9.8logy=1.00log(MBH/M⊙) 14logy=1.90log(MBH/M⊙) 22log(dMBH/dt)=0.74log(MBH/M⊙) 8.1log(dMBH/dt)=0.65logMBH/M⊙) 8.4log(dMBH/dt)=1.4log(MBH/M⊙) 15
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
QuasarSZSimulations
7
Figure5.Thetoprowshowsthemeanydistortionwithinacomoving200kpcregionaroundtheblackholeasafunctionofblackholemass,forredshifts3,2,1fromlefttoright;atz=1theangularsizeoftheboxisaround25arcseconds.Thebottomrowshowsthemassaccretionrateasafunctionofblackholemass,forthesameredshifts.Thepointsarethenumericaldataandthesolidlinesarepower-law ts.Allblackholesintheplottedmassrangeareincluded.Thequalitativesimilaritybetweenthetopandthebottompanelshowstheassociationofthey-distortionwithaccretionrates.
T
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
8
Chatterjeeetal.
3.2
AngularPro les
ForthetwoblackholesshowninFigure1weseeanover-allenhancementintheSZsignalduetoquasarfeedback.ThisagreeswiththesimulationsinScannapieco,Thacker&Couchman2008.Tofurtherquantifythee ectsofquasarfeedbackweaveragetheSZsignalinannuliaroundtheblackholeandexaminetheangularpro leoftheresultingyfromthehotbubbleinFigure3and4.
Figure3showstheaverageangularpro lesofthetotalydistortionaroundthetwoobjectsinthemapsinFigure1.Theblackdashed,bluedot-dashedandredsolidlinesareforz=1,z=2,andz=3respectively.Inbothcasestheyincreaseswithtimebetween~10to25arcsecondseparationfromtheblackhole.ygetssteadilylargerasthefeedbackenergyspreadsoverthisvolume(seealsoFig.4).Atz=3theypro leissteeperinthecentralregionswithasigni cantpeak(inparticularforthesecondquasar)atscalesbelow5arcseconds.Thebumpsinthepro lesareduetoconcentrationsofhotgasoroccasionalotherblackholeswhichareincludedinthetotalaveragesignal.ytypicallyreachesitshighestcentralpeaksattimewhenthequasarismostactive(theblackholeaccretionrateishigh-seeTable2),andhencelargeamountsofenergyarecoupledtothesurroundinggasaccordingtoourfeedbackprescription.Forexample,thez=3curveintherightpanelshowstheblackholeataparticularlyactivephase;thecentralydistortioncorrespondstoatemperaturedi erenceofover4µK.Atz=2thiscentraldistortionissmallerbyafactorof20,whileitislargerbyafactorof10atanangularseparationof10arcseconds.Figure3showsthetotalSZe ectinthedirectionofaquasarresultingfromthesuperpositionoftheSZsignaturefromquasarfeedbackplustheSZdistortionfromtherestofthelineofsightduetothesurroundingadiabaticgascompression,whichisexpectedtoformanaveragebackgroundlevelintheimmediatevicinityofthebackhole.
Inordertoclearlydisentanglethecontributionduetoquasarfeedback,inFigure4,weplotthefractionalchangeinydistortionbetweenthesimulationwithandwithoutblackholemodeling,attwodi erentredshifts.Thesearethepro lescorrespondingtothemapsshowninFigure2.ItisclearthatthelocalSZsignatureislargelydominatedbytheenergyoutputfromtheblackhole,givingafactorbetween300toover3000(forthesecondblackholeatz=3inrightpanel)increaseinyneartheblackhole.Ourre-sultsarealsoconsistentwiththeexpectedydistortionfromthethermalizedgasinthehosthaloscontainingtheseblackholes(whichareontheorder1012M⊙to1013M⊙)andistherange10 9to10 7(seealsoKomatsu&Seljak2002).Thelargestpeakinydistortionenhancementduetoquasarfeedbackgenerallylieswithin5arcsecondsoftheblackhole.
3.3BlackHoleMassScalingRelations
SincetheSZe ectfromtheregionaroundtheblackholesweanalyzedintheprevioussectionisdominatedbythequasarfeedback,weinvestigatewhetheracorrelationbetweenblackholemassandydistortionexistsforthepopulationasawhole(seealsoColberg&DiMatteo2008forotherscalingrelationsbetweenMBHandhostproperties).ThetoprowofFigure5plotsthemeanydistortion,computedovera
sphereofradius200kpc/h(i.e.thesameasinthemaps,correspondingto20arcseconds)versusblackholemassforallblackholesinthesimulationswithMBH>107M⊙atz=1,2and3(fromrighttoleftrespectively).Thesizeoftheregionischosentosampletheentireregionofdistortionduetothequasarfeedback,whileminimizingbiasfromthelocalenvironment(Fig.3and4).Themasscut-o ischosento(a)minimizee ectsduetolackofappropriateresolutioninthesimulationsaswellas(b)produceSZdistortionsthatmaybedetectablebycurrentorupcomingexperiments.
Simplepowerlaw tstotheydistortionasafunctionofblackholemassshowaredshiftevolutionwiththescal-ingbecomingsteeperwithdecreasingredshift.Table3sum-marizesourresultsfromthe ts.Thetrendsshowaclosecorrespondencebetweenthemeanyparameterandtheto-talfeedbackenergyasmeasuredfromy.Inordertofurtherinvestigatethereasonfory MBHrelations,inthebottomrowofFigure5weplottheaccretionrateversusblackholemassatredshifts3,2,and1forthesamesampleasinthetoppanelandperformsimilarpower-law ts(seeTable3).ThetrendsinaccretionrateversusMBHarequalitativelysimilartothetoppanel,demonstratingtheconnectionoftheydistortionduetoquasarfeedbackwiththeblackholeaccretionrateandblackholemass.Inparticular,atz=1therelationsgetsteeperasexpectedifthelargestfractionofblackholesareaccretingaccordingtotheBondiscal-ing(e.g.,m˙∝MBH2
)andshallowerwithincreasingredshiftwhenmostblackholesareaccretingclosetothecriticalEd-dingtonvalue(e.g.,m˙∝MBH).Ofcourse,theaccretionratedependsnotonlyonblackholemassbutalsoontheprop-ertiesofthelocalgasandisalsoregulatedbythelargescalegasinfalldrivenbymajormergers,whichpeakathigherredshifts(DiMatteoetal.2008).Theratiooftheslopes(accretionratetoydistortion)forthe tsshownintable3are1.32,0.65and0.73atredshifts3.0,2.0and1.0respec-tively.ThisshowstheagreementofthetopandthebottompanelsinFigure5,andthecloseconnectionbetweenaccre-tionhistoryandSZdistortion:theSZe ecttrackscloselyquasarfeedbackandispromisingprobeofblackholeac-cretion.ThelargestamplitudesofSZsignalfromquasarisexpectedfromz~2 3atatimeclosetothepeakofthequasarphaseingalaxies.3.4
ResolutionTest
IntheprevioussectionwehavemadeuseoftheD4(Ta-ble1)simulationsfromouranalysis.Atthisresolutionwehavetwoidenticalrealizations,withandwithoutblackholemodeling,allowingustocarryoutdetailedcomparisonsofthee ectsofthequasarfeedback.Wenowwishtoassesspossiblee ectsduetonumericalresolutionbymakinguseoftheD6(BHCosmo)run(seealsoDiMatteoetal.2008,Croftetal.2008andBhattacharyaDiMatteo&Kosowsky2008foradditionalresolutionstudies).Figure6showstheydistortionmapsforthemostmassiveblackholeatredshifts3,2,and1.Thetoprowisforthehigher-resolutionBH-Cosmorunandthebottomrowisforthelower-resolutionrun(D4).Ourresultsatthelowerresolutionappearrea-sonablywellconverged,thoughwithsomedi erences.Thecentralblackholemassesinthetworunsdi ersomewhat.Atz=1,2,and3,theblackholemassesintheD4andBH-Cosmorunare(4.29×109M⊙,2.96×109M⊙),(2.76×109M⊙,
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
QuasarSZSimulations
9
Figure6.Thetoprowshowsy-distortionmapsofthemostmassiveblackholeatz=3(left),z=2(center)andz=1(right)inahigher-resolution(D6)simulation.Thebottomrowshowsthesamethingforalower-resolution(D4)run.Theblackholemassesinthetwosimulationsareslightlydi erentfromeachother:forz=1masses4.29×109M⊙(D4)and2.96×109M⊙(D6),forz=2masses2.76×109M⊙(D4)and1.83×109M⊙(D6),andforz=3masses7.35×108M⊙(D4)and8.56×108M⊙(D6).Theboxsizeis200kpcsquare.Thedi erenceinpeakyvalueforD4andD6variesfrom22%(z=3)to6%(z=2)anditishigherforthehigher-resolutionsimulationatallthreeredshifts.
1.85×109M⊙)and(7.35×108M⊙,8.56×108M⊙)respec-tively.Itclearthatthedi erenceinresolutionisa ectingtheblackholemassasexpectedfrommodestchangesinmassaccretionrate(whichissensitivetothegaspropertiesclosetotheblackhole).Also,moresmallscalestructureinthegasdistributionisevidentathigherresolution,asexpected.Thisa ectstheamplitudeofthetotalSZ uxwhichisen-hancedbyabout6%atz=2andbyabout22%atz=3(whenitismostpeakedaroundtheblackhole)inthehigherresolutionrun.
4DETECTABILITYANDDISCUSSION
Observationally,quasarfeedbackisdirectlydetectablebyresolvingSunyaev-ZeldovichpeaksonsmallangularscalesoftensofarcsecondswithamplitudesofuptoafewµKabovetheimmediatelysurroundingregion.Thecombinationofangularscaleandsmallamplitudemakedetectingthisef-fectverychallenging,atthemarginsofcurrentlyplannedexperiments.Thenecessarysensitivityrequireslargecol-lectingareas,whiletheangularresolutionneededpointstoaninterferometerinacompactcon guration,oralargesingle-dishexperiment.SincetheSZsignalismanifestedasapeakoverthesurroundingbackgroundlevel,aregionsub-stantiallylargerthantheSZpeakmustbeimaged.Thisrequiresatelescopehavingsu cientresolutiontoresolvethecentralpeakintheSZdistortioninanSZimageandenough eldofviewsothatthepeakcouldbeidenti ed.AnexampleisthecompactALMAsubarrayknownastheAtacamaCompactArray(ACA),composedof127-meter
dishes.TheALMAsensitivitycalculatorgivesthatthesyn-thesizedbeamforthisarrayisabout14arcseconds,andtheintegrationtimerequiredtoattain1µKsensitivityperbeamatafrequencyof145GHzandamaximumbandwidthof16GHzisontheorderof1000hours(ALMAsensitivitycalculator).AverydeepsurveywiththisinstrumentcoulddetecttheSZe ectfromindividualblackholes.The50-meterLargeMillimeter-WaveTelescopeinstrumentedwiththeAzTECbolometerarraydetectorwillhaveasomewhatsimilarsensitivitybutdetectibilitywouldrequireaverydeep(thousandsofhours)integrationtime.TheCornell-CaltechAtacamaTelescope(CCAT),a25-metertelescope,estimatesapossiblepixelsensitivityforSZdetectionat150GHzof310µKs1/2for26arcsecondpixels,soa30hourobserva-tioncouldgive1µKpixelnoise.Thesepixelswouldnotbesmallenoughtoresolvethehothaloaroundablackhole,butmightbeabletodetectthedi erenceinasinglepixelduetoblackholeemissioncomparedtothesurroundingpixels.Asidefromrawsensitivityandangularresolution,aseriousdi cultywithdirectdetectionistheconfusionlimitfrominfraredpointsourceemission;http://ATestimatesshowthattheirone-source-per-beamconfusionlimitwillbearound6µKat150GHz(Golwala2006).Thiswillpresentsubstantialdi cultiesfordetectinga1µKtemperaturedistortionifaccurate.Itisnotedthattheobservationsinthesub-millimeterbandislimitedbyconfusionnoiseandsoanotherpossibilityofdirectdetec-tionofthesignalthroughradiofrequencytelescopescouldbeconsidered.Massardietal.2008showsthattheconfusion
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
10Chatterjeeetal.
duetodustygalaxiesislowerat10GHzthenat100GHz.TheauthorsshowthatforgalacticscaleSZe ecttheopti-malfrequencyrangefordetectionisbetween10to35GHz.Howeversubstantialconfusionfromradiogalaxiesattheselowfrequencyobservationswouldstillbeachallengingissueinthedirectdetectionofthesignal.
Giventhesesubstantialdi cultiesassociatedwithdi-rectdetection,analternateroutemaybenecessary.Cross-correlationofarcminute-resolutionmicrowavemapswithop-ticallyselectedquasarormassivegalaxiesisasecondpossi-bledetectionstrategy(ChatterjeeandKosowsky2007,Scan-napieco,Thacker,andCouchman2008).Byaveragingoverlargenumbersofobjects,wecanhaveanestimateofasmallmeanblackholedistortionsignalfromthenoiseinthemaps.Theprimarychallengewiththistechniqueisthedirectemis-sionfromquasarinthemicrowaveband.Itmaybepossibletoselectasampleofquasarwhichissu cientlyradio-quietthatthecross-correlationisnotdominatedbytheintrin-sicemission.Anotherpossibilityistoselectmassive eldgalaxiesundertheassumptionthattheyharboracentralmassiveblackholewhichatonetimewasactive;thehotbubbleproducedhasacoolingtimecomparabletotheHub-bletime,soformerlyactivegalaxiesshouldstillhaveanSZsignature.Finally,theSZe ectfromblackholesisinadditiontotheSZemissionfromanyhotgasinwhichtheblackhole’shostgalaxyisembedded.Massivegalaxiestracelarge-scalestructure,andanycross-correlationwillalsode-tectthissignal.Althoughtheobservationalrequirementsforthecross-correlationmethodareplausiblethescopesfordetectibilitywiththismethodisstilllimitedbycon-fusionnoise.Stackingmicrowave(SZ)mapsinthedirectionofknownquasarswouldalsoserveasanindependentrouteindetectingthesignal(Chatterjee&Kosowsky2007).Thiscanimprovethesignaltonoisebyasubstantialamountal-thoughthismethodwouldstillbelimitedbytheuncertain-tiesdescribedabove.Quantifyingindetailtheobservablesignal(whichwillneedtobedisentangledfromothercon-fusionssuchasdustygalaxies,radiogalaxiesetc.)forthepossibledirectdetectionsmethodsorfromcross-correlationanalysisthatwehavediscussedisbeyondthescopeofthispaperandwedeferittoafuturework.Thesimulationsandmapspresentedhereprovideabasisforfurthermodelingofallthesee ects.
Themainconclusionsdrawnfromthisworkaresum-marizedasfollows.Wehaveusedthe rstcosmologicalsim-ulationstoincorporaterealisticblackholegrowthandfeed-backtoproducesimulatedmapsoftheSunyaev-Zeldovichdistortionofthemicrowavebackgroundduetothefeedbackenergyfromaccretionontosupermassiveblackholes.Thesesimulationsaddresstherapidaccretionphasesofblackholes:periodsofstrongemissionaretypicallyshort-livedandre-quiregalaxymergerstoproducestronggravitationaltidalforcingnecessaryforsu cientnucleargasin owrates(Hop-kins,Narayan&Hernquist2006;DiMatteoetal.2008).Theresultisheatingofthegassurroundingtheblackhole,sothatthelargestblackholesproduceasurroundinghotregionwhichinducesay-distortion(relatedtoatempera-turedistortion)withacharacteristicamplitudeofafewµK.WehaveobtainedascalingrelationbetweentheblackholemassandtheirSZtemperaturedecrement,whichinturnisameasureoftheamountoffeedbackenergyoutput.Thecorrespondencebetweentheydistortionandtheaccretion
ratesisnotexactbutthereisacloseassociationwhichshowsthecorrelationbetweenfeedbackoutputandblackholeac-tivity.FromourresultswehaveshownthatwiththeturnonofAGNfeedbackthesignalgetsenhancedlargelyandtheenhancementispredominantatangularscalesof5arcsec-onds.Finallywehaveshownthatthereisafairprobabilityofdetectingthissignalevenfromtheplannedsubmillimetermissions.
Theroleofenergyfeedbackfromquasarsandfromstarformationisknowntohavesubstantialimpactonthepro-cessofgalaxyformationandevolutionoftheintergalacticmedium,butthedetailsofthisprocessarenotwellunder-stood.ProbesbasedonSunyaev-Zeldovichdistortionsarechallenging,butaneventualdetectioncanbeusedtoputusefulconstraintsandchecksonmodelsofAGNfeedback.
5ACKNOWLEDGMENTS
SCwouldliketothankBrucePartridgeandJamesMoranforhelpfuldiscussionsonexperimentalcapabilitiesofvar-ioustelescopes.SpecialthankstoMarkGurwellforhelp-ingwiththesensitivitycalculationforSMA.SCandAKwouldalsoliketothankChristophPfrommerforsomeini-tialdiscussionsontheproject.ThankstoJonathanLasFargeaswhohelpedwiththeanalysis,supportedbyNSFgrant0649184totheUniversityofPittsburghREUpro-gram.Wewouldalsoliketothanktherefereeforvaluablesuggestionsonimprovementofthepaper.Thisworkwassup-portedattheUniversityofPittsburghbytheNationalSci-enceFoundationthroughgrantAST-0408698totheACTproject,andbygrantAST-0546035.AtCMUthisworkhasbeensupportedinpartthroughNSFAST06-07819andNSFOCI0749212.SCwasalsopartlyfundedbytheZaccheusDanielFellowshipattheUniversityofPittsburgh.
REFERENCES
AghanimN.,Balland,C.,&Silk,J.2000,A&A,357,1ArnaudM.,&EvrardA.E.,1999,MNRAS,305,631Babich,D.&Loeb,A.2007,MNRAS,374,L24Bennettetal.,2003,ApJs,148,1
BhattacharyaS.,DiMatteoT.,&KosowskyA.,2007,ArXive-prints,710,arxiv:07105574
BinneyJ.,&TaborG.,1995,MNRAS,276,663
BirkinshawM.,&LancasterK.,2007,NewAR,51,346BondiH.,1952,MNRAS,112,195
BondiH.,&HoyleF.,1944,MNRAS,104,273
BowerR.G.,BensonA.J.,MallbonR.,HellyJ.C.,FrenkC.S.,BaughC.M.,ColeS.,&LaceyC.G.,2006,MNRAS,370,645
CarlstromJ.,E.,Holder,G.,P.,&Reese,E.D.,2002,ARA&A,40,643
CattaneoA.etal.,2007,MNRAS,377,63
ChatterjeeS.,&KosowskyA.,2007,ApJL,661,L113CiottiL.,&OstrikerJ.P.,2001,551,131
ColbergJ.&DiMatteoT.,2008,MNRAS,inpress
CroftR.A.C.,DiMatteoT.,Springel,V.,Hernquist,L.,2008,MNRAS,submitted
CrotonD.etal.,2006,MNRAS,365,11DawsonK.S.etal.,2002ApJ,581,86
Quasar feedback has most likely a substantial but only partially understood impact on the formation of structure in the universe. A potential direct probe of this feedback mechanism is the Sunyaev-Zeldovich effect: energy emitted from quasar heats the surr
DeZottiG.,BuriganaC.,CavaliereA.,DaneseL.,GranatoG.L.,Lapi,A.,Platania,P.,&Silva,L.,2004,AIPC,703,375D
DiMatteoT.,SpringelV.,&HernquistL.,2005,Nature,433,604
DiMatteoT.,ColbergJ.,SpringelV.,HernquistL.,&SijackiD.,2008,ApJ,676,33
FerrareseL.,&MerrittD.,2000,ApJ,539,L9GolwalaS.,2006,
http://www.astro.caltech.edu/~golwala/talks/CCATFea-sibilityStudySZScience.pdf
GranatoG.L.,DeZottiG.,Silva,L.,BressanA.,&DaneseL.,2004,ApJ,600,580
HelsdonS.F.,&PonmanT.J.,2000,MNRAS,315,356HopkinsPF.,HernquistL.,2006,ApJS,163,50
HopkinsPF.,NarayanR.,&HernquistL.,2006,ApJ,643,641
HoyleF.,&LyttletonR.A.,1939,inproceedingsoftheCambridgePhilosophicalSociety,405
Iliev,I.T.,Pen,U.-L.,Bond,J.R.,Mellema,G.,&Shapiro,P.R.2006,NewAstron.Rev.50,909.
KaiserC.R.,&BinneyJ.J.,2003,MNRAS,338,837KatzN.,WeinbergD.H.,&HernquistL.,1996,ApJS,105,19
KawataD.,&GibsonB.K.,2005,MNRAS,358,L16KomatsuE.,&SeljakU.,2002,MNRAS,336,1256KosowskyA.,2003,AIPConf.Proc.666,325.
KosowskyA.etal.,2006,NewAstron.Rev.50,969.
LapiA.,CavaliereA.,&DeZottiG.,2003,ApJl,597,L93LapiA.,CavaliereA.,&MenciN.,2005,ApJ,619,60LapiA.,ShankarF.,MaoJ.,GranatoG.L.,SilvaL.,DeZottiG.,&DaneseL.,2006,ApJ,650,42Magorrian,J.,etal.,1998,AJ,115,2285
Majumdar,S.Nath,B.,&Chiba,M.2001,MNRAS,324,537
MarkevitchM.,1998,ApJ,504,27Marshalletal.2001,ApJ,551,L1-L4
MassardiM.,LapiA.,deZottiG.,EkersR.D.,&DaneseL.,2008,MNRAS,384,701
McNamaraB.R.,NulsenP.E.J.,WiseM.W.,Ra ertyD.A.,CarilliC.,SarazinC.l.,&BlantonE.L.,2005,Nature,433,45
McNamaraB.R.,&NulsenP.E.J.,2007,ARA&A,45,117
McQuinn,M.,Furlanetto,S.R.,Hernquist,L.,Zahn,O.,&Zaldarriaga,M.2005,ApJ,630,643
MerrittD.,&FerrareseL.,2001,ApJ,547,140MoH.J.,&MaoS.,2002,MNRAS,333,768
MorandiA.,EttoriS.,&MoscardiniL.,2007,MNRAS,379,518
MonaghanJ.J.,1992,ARA&A,30,543
NatarajanP.,&SigurdssonS.,1999,MNRAS,302,288NathB.B.,&RoychowdhuryS.,2002,MNRAS,333,145NulsenP.,McnamaraB.,DavidL.,&WiseM.,2004,cosp,35,3235
OhS.P.,&BensonA.,2003,MNRAS,342,664
Oh,S.P.,Cooray,A.,&Kamionkowski,M.2003,MNRAS,342,20
PetersonR.,&FabianA.,2006,Phys.Rep.,427,1
PlataniaP.,BuriganaC.,DeZottiG.,LazzaroE.,&BersanelliM.,2002,MNRAS,337,242
Reichardtetal.,2008,Arxive-prints,801,arxiv:08011491
QuasarSZSimulations
11
Rajguruetal.,2005,MNRAS,363,1125
Rosa-GonzalezD.,TerlvichR.,TerlvichE.,FriacaA.,&GaztanagaE.,2004,MNRAS,348,669
RoychowdhuryS.,Ruszkowski,M.,&Nath,B.B.2005,ApJ,634,90
RuhlJ.E.etal.,2004,Proc.SPIE,5498,11
SandersonA.J.R.,PonmanT.J.,&O’SullivanE.,2006,MNRAS,372,1496
ScannapiecoE.,&OhS.P.,2004,ApJ,608,62
ScannapiecoE.,ThackerR.J.,CouchmanH.M.P.,2008,ApJ,678,674
SchawinskiK.,TomasD.,SarziM.,MarastonC.,Kavi-rajS.,JooS.,YiS.,SilkJ.,2007,ArXive-prints,709,arXiv:0709.3015
SijackiD.,SpringelV.,DiMatteoT.,&HernquistL.,2007,MNRAS,380,877
SilkJ.,&ReesM.J.,1998,A&A,331,L1SpergelD.N.etal.,2003,ApJS,148,175SpergelD.N.etal.,2007,ApJS,170,377SpringelV.,2005,MNRAS,364,1105
SpringelV.,&HernquistL.,2003a,MNRAS,339,312SunyaevR.A.,&Zel’dovichYa.B.,1972,CommentsAs-trophys.SpacePhys.,4,173
ThackerR.J.,ScannapiecoE.,&CouchmanH.M.P.,2006,ApJ,653,86
Tremaine,S.et.al.2002,ApJ,574,740
VoitG.M.,BaloghM.L.,BowerR.G.,LaceyC.G.,&BryanG.L.,2003,ApJ,593,272
VoitG.M.,&DonahueM.,2005,ApJ,634,955
WeinmannS.M.,vandenBoschF.C.,YangX.,MoH.J.,CrotonD.J.,&MooreB.,2006,MNRAS,372,1161WhiteM.,HernquistL.,SpringelV.,2002,ApJ,579,16WuK.K.S.,FabianA.C.,&NulsenP.E.J.,2000,MN-RAS,318,889
YamadaM.,SugiyamaN.,&SilkJ.1999,ApJ,522,66ZanniC.,MuranteG.,BodoG.,MassagliaS.,RossiP.,&FerrariA.,2005,A&A,429,399
上一篇:九年级《变脸》ppt课件
下一篇:十大X86服务器常见故障