2014年河南省基础数据高级

发布时间:2024-11-25

2014年河南省基础数据高级

1、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(i<j){
while (i<j && r[j]>x) j=j-1; if (i<j) {r[i]=r[j];i=i+1;}
while (i<j && r[i]<x) i=i+1; if (i<j) {r[j]=r[i];j=j-1;}
}
r[i]=x;
}

2、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(i<j){
while (i<j && r[j]>x) j=j-1; if (i<j) {r[i]=r[j];i=i+1;}
while (i<j && r[i]<x) i=i+1; if (i<j) {r[j]=r[i];j=j-1;}
}
r[i]=x;
}

3、数组A和B的元素分别有序,欲将两数组合并到C数组,使C仍有序,应将A和B拷贝到C,只要注意A和B数组指针的使用,以及正确处理一数组读完数据后将另一数组余下元素复制到C中即可。
void union(int A[],B[],C[],m,n)
//整型数组A和B各有m和n个元素,前者递增有序,后者递减有序,本算法将A和B归并为递增有序的数组C。
{i=0; j=n-1; k=0;// i,j,k分别是数组A,B和C的下标,因用C描述,下标从0开始
while(i<m && j>=0)
if(a[i]<b[j]) c[k++]=a[i++] else c[k++]=b[j--];
while(i<m) c[k++]=a[i++];
while(j>=0) c[k++]=b[j--];
}算法结束
4、要求二叉树按二叉链表形式存储。15分
(1)写一个建立二叉树的算法。(2)写一个判别给定的二叉树是否是完全二叉树的算法。
BiTree Creat() //建立二叉树的二叉链表形式的存储结构
{ElemType x;BiTree bt;
scanf(“%d”,&x); //本题假定结点数据域为整型
if(x==0) bt=null;
else if(x>0)
{bt=(BiNode *)malloc(sizeof(BiNode));
bt->data=x; bt->lchild=creat(); bt->rchild=creat();
}
else error(“输入错误”);
return(bt);
}//结束 BiTree
int JudgeComplete(BiTree bt) //判断二叉树是否是完全二叉树,如是,返回1,否则,返回0
{int tag=0; BiTree p=bt, Q[]; // Q是队列,元素是二叉树结点指针,容量足够大
if(p==null) return (1);
QueueInit(Q); QueueIn(Q,p); //初始化队列,根结点指针入队
while (!QueueEmpty(Q))
{p=QueueOut(Q); //出队
if (p->lchild && !tag) QueueIn(Q,p->lchild); //左子女入队
else {if (p->lchild) return 0; //前边已有结点为空,本结点不空
else tag=1; //首次出现结点为空
if (p->rchild && !tag
) QueueIn(Q,p->rchild); //右子女入队
else if (p->rchild) return 0; else tag=1;
} //while
return 1; } //JudgeComplete

4、两棵空二叉树或仅有根结点的二叉

2014年河南省基础数据高级

树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。
int Similar(BiTree p,q) //判断二叉树p和q是否相似
{if(p==null && q==null) return (1);
else if(!p && q || p && !q) return (0);
else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild))
}//结束Similar

5、 将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。
int BPGraph (AdjMatrix g)
//判断以邻接矩阵表示的图g是否是二部图。
{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合)
int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。
int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组
for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合
Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1
while(f<r)
{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号
if (!visited[v])
{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中
for (j=1,j<=n;j++)
if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列
else if (s[j]==s[v]) return(0);} //非二部图
}//if (!visited[v])
}//while
return(1); }//是二部图
[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。

6、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(i<j){
while (i<j && r[j]>x) j=j-1; if (i<j) {r[i]=r[j];i=i+1;}
while (i<j && r[i]<x) i=i+1; if (i<j) {r[j]=r[i];j=j-1;}
}
r[i]=x;
}

7、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存
放位置即为c。
(1) (3分)给出适用于计数排序的数据表定义;
(2) (7分)使用Pascal或C语言编写实现计数排序的算法;
(3) (4分)对于有n个记录的表,关键码比较次数是多少?
(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?

8、设有一组初始

2014年河南省基础数据高级

记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(i<j){
while (i<j && r[j]>x) j=j-1; if (i<j) {r[i]=r[j];i=i+1;}
while (i<j && r[i]<x) i=i+1; if (i<j) {r[j]=r[i];j=j-1;}
}
r[i]=x;
}

9、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。
48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

10、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。
(1)s-w[n],n-1 //Knap(s-w[n],n-1)=true
(2)s,n-1 // Knap←Knap(s,n-1)

11、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]<x,下步应向i大的方向查找;三是A[i,j]=x,查找成功。否则,若下标已超出范围,则查找失败。
void search(datatype A[ ][ ], int a,b,c,d, datatype x)
//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.
{i=a; j=d; flag=0; //flag是成功查到x的标志
while(i<=b && j>=c)
if(A[i][j]==x) {flag=1;break;}
else if (A[i][j]>x) j--; else i++;
if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.
else printf(“矩阵A中无%d 元素”,x);
}算法search结束。
[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x<A[i,j])。向下最多是m,向左最多是n。最佳情况是在右上角比较一次成功,最差是在左下角(A[b,c]),比较m+n次,故算法最差时间复杂度是O(m+n)。

12、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。
#define true 1

#define false 0
typedef struct node
{datatype data; struct node *llink,*rlink;} *BTree;
void JudgeBST(BTree t,int flag)
// 判断二叉树是否是二叉排序树,本

2014年河南省基础数据高级

算法结束后,在调用程序中由flag得出结论。
{ if(t!=null && flag)
{ Judgebst(t->llink,flag);// 中序遍历左子树
if(pre==null)pre=t;// 中序遍历的第一个结点不必判断
else if(pre->data<t->data)pre=t;//前驱指针指向当前结点
else{flag=flase;} //不是完全二叉树
Judgebst (t->rlink,flag);// 中序遍历右子树
}//JudgeBST算法结束


13、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>}
写出G的拓扑排序的结果。
G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7


14、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.
typedef struct node
{int data; struct node *lchild,*rchild;}node;
int N2,NL,NR,N0;
void count(node *t)
{if (t->lchild!=NULL) if (1)___ N2++; else NL++;
else if (2)___ NR++; else (3)__ ;
if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;
}
26.树的先序非递归算法。
void example(b)
btree *b;
{ btree *stack[20], *p;
int top;
if (b!=null)
{ top=1; stack[top]=b;
while (top>0)
{ p=stack[top]; top--;
printf(“%d”,p->data);
if (p->rchild!=null)
{(1)___; (2)___;
}
if (p->lchild!=null)
(3)___; (4)__;
}}}}

15、假设K1,…,Kn是n个关键词,试解答:
试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。

16、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。
17、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)A和D是合法序列,B和C 是非法序列。
(2)设被判定的操作序列已存入一维数组A中。
int Judge(char A[])
//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O
的的个数。
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i])
{case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(k>j){printf(“序列非法\n”);exit(0);}
}

2014年河南省基础数据高级

i++; //不论A[i]是‘I’或‘O’,指针i均后移。}
if(j!=k) {printf(“序列非法\n”);return(false);}
else {printf(“序列合法\n”);return(true);}
}//算法结束。

18、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。
int Similar(BiTree p,q) //判断二叉树p和q是否相似
{if(p==null && q==null) return (1);
else if(!p && q || p && !q) return (0);
else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild))
}//结束Similar

19、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
29. ① 试找出满足下列条件的二叉树
1)先序序列与后序序列相同 2)中序序列与后序序列相同
3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

20、二路插入排序是将待排关键字序列r[1..n]中关键字分二路分别按序插入到辅助向量d[1..n]前半部和后半部(注:向量d可视为循环表),其原则为,先将r[l]赋给d[1],再从r[2] 记录开始分二路插入。编写实现二路插入排序算法。
21、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。
#define true 1
#define false 0
typedef struct node
{datatype data; struct node *llink,*rlink;} *BTree;
void JudgeBST(BTree t,int flag)
// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。
{ if(t!=null && flag)
{ Judgebst(t->llink,flag);// 中序遍历左子树
if(pre==null)pre=t;// 中序遍历的第一个结点不必判断
else if(pre->data<t->data)pre=t;//前驱指针指向当前结点
else{flag=flase;} //不是完全二叉树
Judgebst (t->rlink,flag);// 中序遍历右子树
}
//JudgeBST算法结束


22、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。

2014年河南省基础数据高级.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219