Verified Computations of Laminar Premixed Flames
发布时间:2024-11-21
发布时间:2024-11-21
2007-0381
45thAIAAAerospaceScienceMeetingandExhibit,8-11January2007,Reno,Nevada
Veri edComputationsofLaminarPremixedFlames
AshrafN.Al-Khateeb ,JosephM.Powers ,andSamuelPaolucci
UniversityofNotreDame,NotreDame,Indiana,46556-5637,USA
Therequiredspatialdiscretizationtocapturealldetailedcontinuumphysicsinthere-
actionzoneforone-dimensionalsteadylaminarpremixedhydrogen-air amesdescribed
bydetailedkineticsandmulti-componenttransportisaccuratelyestimatedaprioribya
simplemeanfreepathcalculation.Toverifythis,arobustmethodhasbeendevelopedto
rigorouslycalculatethe nestlengthscaleaposteriori.Themethodrevealsthatthe nest
lengthscaleisatthemicron-level.Thisresultisconsistentwithanestimatefromtheun-
derlyingmolecularcollisiontheory,andordersofmagnitudesmallerthanthediscretization
scalesemployedinnearlyallmulti-dimensionaland/orunsteadylaminarpremixed ame
simulationsintheliterature.
I.Introduction
Itiswellunderstoodthatinanymathematicallybasedscienti ctheory,associatedcomputationsshouldhave delitywiththeunderlyingmathematics,andtheunderlyingmathematicalmodelhastorepresenttheobservedphysics.The rstissueisdemonstratedbycomparingcomputationalresultswithanotherknownsolutionand/orperformingaformalgridconvergencestudy,whilethesecondissueisdemonstratedbycomparingthecomputationalpredictionswithexperimentaldata.Addressingthesetwoissues,inthisorder,isanecessityinanycomputationalstudytobuildcon denceinboththesimulationstrategyandtheunderlyingmathematicalmodel.
Theexerciseofdemonstratingtheharmonyofthediscretesolutionwiththefoundationalmathematicsisknownasveri cation.1Formulti-scaleproblems,veri cationisdi cultduetotherangeofthespatio-temporalscales,whichmayspanmanyordersofmagnitude.Inthiskindofproblem,usuallymodeledbyhighlynonlinearequations,signi cantcouplingacrossthescalescanoccur,sothaterrorsatsmallscalescanrapidlycascadetothelargescales.Moreover,thestrengthofthecouplingacrossthescalesisnotknownapriori.So,allthephysicalscalesofthemathematicalmodel,temporalandspatial,havetobecapturedinordertohavefullcon dencethatpredictionsarerepeatable,grid-independent,andthusveri able.Subsequently,inthevalidationsteponecanchoosewhatphysicalphenomenaandtowhataccuracyonewantstoreproduceexperiments.
Themainaimofthispaperistorigorouslydeterminetherequiredspatialresolutiontocaptureallphysicalscalesinastandardmulti-scaleproblem:thesteadyone-dimensionallaminarpremixed amepropagatingfreelyatatmosphericpressureinastoichiometricmixtureofhydrogen-airdescribedbydetailedkineticsandmulti-componenttransport.Here,therobustmethodtocalculatethelengthscalesemployedinPowersandPaolucci2,3forgasphasedetonationisimplementedwithmodi cationforde agration.Themethodisrobustinthatithaslittledependenceonthedetailsoftheunderlyingnumericalmethodusedtocalculatethelaminar ame.Itsimplyrequiresalocaldeterminationofthestateofthesystem,whichisfollowedbyaJacobianformulation,andageneralizedeigenvalueanalysis.Assuch,itisabletoestimatewithgreataccuracythelengthscalesonafundamentalmathematical,non-numerical,basis.Theminimumlengthscalewhichmustberesolvedinorderforthemathematicalmodeltobeveri edisthusdetermined.
Inthe rstsection,thegoverningpartialdi erentialequations(PDEs)forunsteadyreactive owarepresented.ThisisfollowedbyareductionofthePDEsintoasystemofdi erentialalgebraicequations(DAEs)
Candidate,DepartmentofAerospaceandMechanicalEngineering,AIAAStudentMember,aalkhate@nd.edu.
Professor,DepartmentofAerospaceandMechanicalEngineering,AIAAAssociateFellow,powers@nd.edu. Professor,DepartmentofAerospaceandMechanicalEngineering,AIAAMember,paolucci@nd.edu.
c2007byJosephM.Powers.PublishedbytheAmericanInstituteofAeronauticsandAstronautics,Inc.withCopyright
permission. Associate Ph.D.
whichdescribesthespatialevolutionofthestatevariables.Followingashortdescriptionofthegeneralizedeigenvalueanalysisandlengthscaledetermination,thestandardformoftheequationsisdelineated,andabriefdescriptionofthenumericalmethodispresented.Next,thenumericalalgorithmisveri edagainstcalculationsgivenbySmookeetal.4Then,themathematicalmodelisvalidatedagainstexperimentaldatacompiledbyDixon-Lewis.5
Forthemainresultsofthestudy,itisdesirabletohaveaphysicalsolutioninallregionsofthelaminar ame.So,inordertosuppressnumericalanomaliesnearthecoldboundarysoastofullyexposethebehaviorinallregionsofthe ame,theinitialmixturetemperatureisraisedto800K.Asaresult,afullyresolvedpredictionofalaminarpremixed ameinastoichiometrichydrogen-airmixtureinitiallyatatmosphericpressureisachieved.Then,allthelengthscalesoverwhichthesystemevolvesareshown,andthe nestlengthscaleiscomparedtopredictionsofasimplemoleculartheory.Moreover,thiscomparisonispresentedforawiderangeofpressures.Finally,acomparisonbetweenthegridresolutionutilizedinmoregeneralrecentstudieswiththerequiredlengthscaletoresolvetheunderlyingone-dimensionalsteadylaminar amestructure,predictedbytheeigenvalueanalysis,isgivenbeforespeci cconclusionsarestated.
II.
II.A.GoverningEquationsMathematicalModel
Thefollowingunsteadyequations6describethesystemunderconsideration,aone-dimensionaladiabaticlaminarpremixedmixtureofNmolecularspeciescomposedofLatomicelementswhichundergoJreversiblereactionswithnobodyforcepresent: (ρu ), x 2 ρu +p τ,(ρu )= x t2 u u 2 pτqρe+= ρu e++J,+ 2 x 2ρρ t
˙iMi,i=1,...,N 1. Yi+Jim)+ω(ρYi)= (ρu x t ρ t= (1)(2)(3)(4)
.ThedependentvariablesareTheindependentvariablesarethespatialcoordinatex andthetimet
mixturedensityρ,mixturevelocityu ,pressurep,viscousstressτ,mass-basedspeci cinternalenergyofqthemixturee,totalheat uxJ,andfortheithspecie,Yi,Jim,andω˙i,whicharethethemassfraction,thedi usivemass ux,andthemolarproductionrateperunitvolume,respectively.TheparameterMiisthemolecularmassofspeciei.Equations(1-3)describetheconservationofmass,linearmomentum,andenergy,respectively.Equation(4)isanevolutionequationforN 1species.
Forthissystem,theconstitutiverelationsfordi usivemass uxesandheat uxare
Jim= N MiDikYkMk1 p1 χkT1 Tρ+1 , DiMχk x Mp x T x k=1k=i
N i=1,...,N 1,(5)
Jq
where,= NT D χ1M p1iiiJimhi Tq+,+1 Mχ x Mp x iii=1i=1
T, x
N ρYi
i=1(6)qp== k T(7).(8)Mi
InEqs.(5-8),thenewdependentvariablesaremixture-averagemolecularmassM,temperatureT,Fourier’sheat uxq,andfortheithspecie,χiandhi,whicharethemolefractionandthemass-basedspe-
Tci centhalpy.ThevariablesDik,k,andDiarethemulti-componentdi usioncoe cients,thetemperature-
dependentmixturethermalconductivity,andthethermaldi usioncoe cientofspeciei.Aconstantpa-rameteristheuniversalgasconstant =8.314×107erg/mole/K.Equations(5-6)areappropriateforamixtureofidealgases,7anddescribemulti-componentmassdi usion uxesincludingtheSorete ect,andtheheat uxincludingtheDufoure ect.Equation(7)de nesFourier’slaw.Equation(8)isthethermalstateequationforanidealgasmixture.Thissystemofequationsiscompletedbyadoptinganappropri-atesetofadditionalconstitutiverelations,(e.g.thelawofmassaction,theArrheniusreactionrate,thetemperature-dependententhalpy,andentropy).FulldetailsaregivenbyAl-Khateebetal.8andSinghetal.9
Thecompletesystemissimpli edbyreducingitintoasystemofordinarydi erentialequations(ODEs).Thetime-dependentbehaviorofthesystemisrelaxedtoasteadilypropagating amefrontwithconstant,albeitunknown, amespeedS.Thelow-Machnumberassumptionisadopted.Thisassumptionisreason-ableforde agration,10andimpliesthatfora xedmass uxthemomentumequationnolongerneedbeconsidered.AsystematicreductionofthecompletesystemisgiveninRef.8.
Asaresult,thegoverningequationsarerecastintheformd(ρuh+Jq)d(ρuYle+Jle)dxd(ρuYi+Jim)dxd(ρu)dx===0,0,0,l=1,...,L 1,i=1,...,N L.(9)(10)(11)(12)=ω˙iMi,
Thespatialcoordinatexisa amefront-attachedcoordinate,uisthemixturevelocityinthe ameframe,histhemass-basedspeci centhalpyofthemixture,Ylearetheelementmassfractions,andJlearetheelementmass uxes.ForEqs.(9-12),thatdescribethesteadilypropagatinglaminarpremixed ame,theappropriatesetofboundaryconditionsis
x=0:
∞:xf:Jim=Yio,i=1,...,N 1,T=To,Yi+odTdYi→0,→0,i=1,...,N 1,dxdxT=Tf,(13)(14)(15)x→x=
wherexfisaspeci edspatialpointandTfisthespeci edtemperatureatthatlocation.11Thesearecommonlyusedtostudyde agration,thoughotherformulationsarepossible.
AtthisstagethevariableSisconsidereda xedparameterforagivencalculation;aniterativetechniqueisusedtodetermineSsothatallboundaryconditionsaresatis ed.Theequationsaremostconvenientlyposedasasetof2N+2DAEsintermsof2N+2statevariables;speciesmassfractionYi,(i=1,...,N),speciesmass uxJim,(i=1,...,N),temperatureT,andFourier’sheat uxq.Thissystem,inacompactrepresentation,is
A·dz=f,dx(16)
D ˙A= M0 0I0 0 0 ,z= Q
where,
D
˙M
I
Q==== . .. Y1m JNM .N .. ω˙1M1 YN . .m . J1 ,f= ω˙N LMN L.. . ρuYe+Je (ρoSYe) 111o m JN .. . T eee+JL (ρoSYLo) ρuYLq q ρuh+J (ρoSho)q mJM1 , (17)N DimYmM,Dik Mkm=1i=1,...,N,0(N L)×L0L×L ,k=1,...,N,(18)I(N L)×(N L)0L×(N L) 00. k0 m=iρoSI(N L)×(N L)0L×(N L),(19)(20)(21)0(N L)×L0L×L
Thedynamicalsystem,Eq.(16),andtheboundaryconditions,Eqs.(13-15),areusefulforlengthscaleanalysis.Directsolutionofthissystemforthereactionzonestructureispossible,inprinciple.However,theproblemcanbeshowntobeahighordershootingproblemrenderingdirectsolutiondi cult.
II.B.APosterioriLengthScaleAnalysis
Toaccuratelydeterminethelengthscalesoverwhichthesystemevolves,aneigenvalueanalysiscanbeappliedtoEq.(16).SinceAissingular,thestandardeigenvalueanalysisisnotapplicable.Instead,thegeneralizedeigenvaluesofthisdynamicalsystemcanbecalculated.12
Assume rstthatz= z(x)hasbeendeterminedbysomeappropriatenumericalmethodsothat z(x)satis esEqs.(13-15,16).Considerthenanarbitraryspatialpointx=x atwhichthestatevariablesarez= z(x )=z .Byde ningtheperturbationfrom z(x)as z(x)=z(x) z(x),linearizingEq.(16)aboutx=x ,andadoptingthestandardassumptionthat
z=veλx,(22)
whereλandvareconstantsyieldthegeneralizedeigenvalueproblem
λA ·v=B ·v,(23)
whereλisingeneralacomplexnumberdenotingthegeneralizedeigenvalue,visthecorrespondinggener-alizedeigenvector,andA andB arematricesofsize(2N+2)×(2N+2).FulldetailsaregiveninRef.8.Solvingforλi,i=1,...,2N L,thenusingEq.(22),itiseasilyseenthatthelengthscalesoverwhichthedependentvariablesevolvearegivenbythereciprocaloftherealpartoftheseeigenvalues,
i=1,|Re(λi)|i=1,...,2N L.(24)
Byevaluatingtheeigenvaluesateachspatialpoint,thelengthscalesoverwhichthesystemevolvesthroughthereactionzonearedetermined.Asaresult,theminimumsizeofdiscretizationtocapturethe
nestscaleofthesystemcanbedetermined.Ingeneral,theeigenvaluesarecomplex,wherethereciprocalsoftherealpartsprovidethelengthscalesofamplitudegrowth,andthereciprocalsoftheimaginarypartsrepresenttheoscillatorylengthscale.Inthiswork,theeigenvaluesarepurelyreal,exceptforsomelimitedregions.
II.C.StandardFormoftheEquations
Thelessre ned,butmorecompact,formwhichcommonlyappearsintheliteraturetomodelstationarylaminarpremixed ames,cf.Refs.11,13,14,areobtainedfromEqs.(1-4)byfollowingthesameapproachasAris15toarriveatd(ρu)=0,dx N dhdq dTiJim+++ω˙iMihi=0,ρucpdxdxi=1dx
dYidJimρu+dxdx=ω˙iMi,i=1,...,N 1.(25)(26)(27)
Asolutionforthisboundaryvalueproblem,Eqs.(25-27)withtheboundaryconditionsEqs.(13-15),canbeobtainedbydiscretizingthespatialdomainusing nitedi erences,andtheresultingalgebraicsystemofequationsaresolvediterativelyusingadampedmodi edNewton’smethod,wherethesolutioniterateisbroughtintotheconvergencedomainbyusingpseudo-timeintegration.16
http://putationalMethod
AdoubleprecisionFORTRAN-77codehasbeendevelopedandlinkedwiththeInternationalMathematicalandStatisticalLibraries(IMSL)routinesDFDJACforJacobianevaluation,DEVLRGforeigenvaluesestimation,DGVLRGforgeneralizedeigenvaluesestimation,andadoubleprecisionversionofthepublicdomaineditionoftheCHEMKINpackage17,18toobtainkineticratesandthermodynamicsproperties,adoubleprecisionversionofthepublicdomaineditionoftheTRANSPORTpackage19tocalculatemulti-componenttransportpropertiesofspecies,andadoubleprecisionversionofthepublicdomaineditionofthePREMIXalgorithm16toobtainthesteadystructureofadiabaticlaminarpremixed ames.
Inthisstudy,theresolvedstructureisobtainedbysolvingthestandardform,Eqs.(25-27),andtheeigenvaluesarecalculatedbyusingthedynamicalsystemform,Eq.(16).Moreover,allresultsareobtainedonagridthathasbeenadaptivelyre nedtocaptureregionsofsteepgradient.Asecondordercentraldi erenceschemehasbeenemployedtodiscretizeallthespatialderivatives.Themassandheat uxeshavebeenestimatedatintermediategridpointstomaintainsecondorderaccuracy.Moreover,allthecalculationspresentedinthisworkwereperformedonasingleprocessor3.2GHzHewlett-Packardmachine,andtypicalcalculationsfortheeigenvalueswerecompletedwithinoneminute.
IV.Results
Astoichiometrichydrogen-airmixtureatpo=1atmhasbeenconsidered,wheretheinitialmolarratioisgivenby2H2+O2+3.76N2.AkineticmodelidenticaltothatofSmookeetal.,4withL=3elements,N=9species,andJ=19reversiblereactionsisused.Inthismechanism,thereactantspeciesareH2,O2,H,O,OH,HO2,H2O2,andH2O.TheinertdiluentforthemixtureisN2.
IV.A.MathematicalVeri cationandExperimentalValidation
Anecessaryveri cationistoachievethesameresultsthathavebeenobtainedinpreviousstudies.Tothisend,acalculationisperformedtoreproducethetemperatureandspeciespro lesofastoichiometric,atmosphericpressurehydrogen-air amefoundinSmookeetal.4Equations(25-27)withtheboundaryconditionsEqs.(13-15)aresolved,wherethismathematicalmodelisidenticaltotheonedescribedinRef.4.Thespeci edspatialpointisxf=0.05cm,thespeci edtemperatureisTf=400K,andthetemperatureoftheunburnedmixtureisTo=298K.Inthisparticularcalculation,theDufoure ectintheheat uxmodelisneglected,whiletheSorete ectinthemass uxmodelisconsideredtomatchthemodelinRef.4.
AlthoughconsideringoneofthesetermsandneglectingtheotherviolatesOnsagerreciprocity,thisisdonehereforveri cationpurposesonly.TheresultsareillustratedinFig.1;itiseasilycheckedthatthestationary amestructureisidenticaltothatofRef.4.
Next,acomparisonwithexperimentalresultsaddressesthequestionastowhetherthemodelisagoodrepresentationoftheobservablephysics.Forvalidationpurposes,aseriesofcalculationsisperformedonanatmosphericpressurehydrogen-airlaminarpremixed ameinitiallyatTo=298K.Atdi erentH2percentagesinthemixture,the amespeedisdetermined.Acomparisonbetweenthecalculated amespeedsandthedatacompiledbyDixon-Lewis20ispresentedinFig.2.Itisclearthatthecomputationalpredictionsliewithinthescatteroftheexperimentaldata,andtheyareasgoodashavefoundbyothers.4,20IV.B.StoichiometricHydrogen-AirPremixedLaminarFlame
Next,thePREMIXcode16isusedfordeterminingthestationarystructureofaone-dimensional,stoichiometric,adiabatic,2H2+O2+3.76N2premixedlaminar ameatatmosphericpressure.Thespeci edtemperatureisTf=900K,thespeci edtemperaturelocationisassignedatxf=2.30cm,andthemixturetemperatureatthecoldboundaryisTo=800K.
Fullyresolvedsteadytemperatureandspeciespro lesforTo=800KareshowninFigs.3and4.Althoughlinearscalesareusuallyusedintheliterature,herelog-logandsemi-logscaleshavebeenemployedtobetterillustratethedisparatescales.Figure3showsthespatialdistributionofspeciesmassfractionsthroughouttheentire amezone.Atx≈10 4cm,theminorspeciesgrowthrateschangeslightly,whichrevealsthatsigni cantdissociationreactionsatthisscaleareinduced.Anotherincreaseintheminorspeciesmassfractiongrowthratesisnotedatx≈10 2cm,whichindicatestheoccurrenceofmorevigorouschemicalinteractionoftheminorspecies.For10 2<x<2.30×100cm,theminorspeciesmassfractionscontinuetoincreaserapidlywithdi erentgrowthrates.Ontheotherhand,themajorspeciesH2,O2,andN2haveessentiallyconstantmassfractions.Justpastx=2.20×100cm,whichisneartheendofthepreheatzone,allthespeciesmassfractionsundergosigni cantchange,andtheradicals’massfractionsreachtheirmaximumvalues.Atx=2.40×100cm,exothermicrecombinationofradicalscommencesformingthepredominantproductH2O.Thiszoneextendsuptox=1.39×101cm;afterthat,thesystemcomestoanequilibriumwhereallthespatialgradientsvanish.Tocon rmthis,thespatialdomainwasextendedtox=1.00×102cm,butnofurtherchangeswerenoted.
InFig.4,thetemperaturepro leispresented.Atx≈2.20×100cm,thereactionundergoesaparticularlyvigorousstageinwhichthechangeinthetemperatureissigni cant.Thus,theignitionpointcanbeassigned;itisde nedasthepointwherethetemperaturegradientdT/dxreachesamaximumvalue.Also,thisparticularpointde nestheendofthepreheatzoneandthebeginningofthereactionzone,whichextendstotheequilibrium.Forthiscasetheignitionpointisassignedatx=2.315×100cm,andthereactionzonelength,de nedasthedistancefromtheignitionpointuptothelocationwherethetemperaturereaches0.99ofitsequilibriumvalue,is reaction=1.16×101cm.
Havingthefullyresolvedstructureinhand,thelocalJacobianandthespatialgeneralizedeigenvaluesarecalculatedfromthecoldboundarytonearequilibrium.Asaresult,thelocallengthscales iarepredictedthroughoutthedomain,Fig.5.Themulti-scalenatureoftheproblemandthelengthscalesoverwhichthespeciesevolveareclearlyshown.The nestlengthscaleandthelargestlengthscaleforthissystemvaryfrom7.60×10 4cmand1.62×107cminthepreheatzoneto2.41×10 4cmand2.62×100cminthereactionzone,respectively.
InadditiontothevaluesreportedinFig.5,theeigenvalueswerecheckedbycalculationwithotherstandardalgorithms.Allalgorithmsreturnedequivalenteigenvaluescorrespondingto nelengthscales.However,numericalerrorsinducedsomediscrepanciesinthelessimportantcoarselengthscaleestimates.Theleastnumericalerrorinthephysicaleigenvalueswasnotedinthedirectcalculationoftheeigenvalues;however,thisalgorithmreturnedL=3spuriouseigenvalues,whichwereoverruledbythemorerobustgeneralizedeigenvaluemethod.
Theevolutionofaparticularspeciesisnotassociatedwithaparticularlengthscale,sincethespeciesmassfractionsdependonlocallinearcombinationsofalleigenmodes.So,thespeciesmassfractionsvaryonthesescalesthroughtheentiredomain.Theimportant nestscaleis finest=2.41×10 4cm,whichoccursatequilibrium.Thepredicted nestlengthscaleandthesmallestscaleoverwhichthespeciesvary,x=10 4cm,arenearlyidentical.Moreover,the nestlengthscalee ectinthepreheatzonecanbeobservedinthevariationoftheminorspeciesmassfractions,whichensurestheconsistencybetweentheeigenvalue-determined nestlengthscaleandthesmallestscaleoverwhichthespeciesvary.Asthesystem
approachesequilibrium,alloftheeigenvaluesarereal:halfarepositive,andhalfarenegative.Thus,theequilibriumpointisahighordersaddlenode.
IV.C.MeanFreePathEstimate
Remarkably,itispossibletodevelopasimpleaprioriestimatefor finestpredictedaposterioribythecalculationsoftheprevioussection.Suchanestimateisusefulinprovidingalowerboundforcomputationalgridresolutionnecessarytoguaranteefullyresolvedcontinuumcalculations.The nestlengthscalecanbeshowntobeclosetothemixturemeanfreepathscale mfp,whichisthecuto lengthscaleassociatedwithcontinuumtheories.Physicallymeaningfulresultsareavailableatorabovethemeanfreepath.AsimpleestimateforthemeanfreepathisgivenbyVincentiandKruger,21
mfp=M.Nπd2ρ(28)
Here,thenewparametersaredthemolecularcollisioncross-sectiondiameterandN=6.0225×10mole 1Avogadro’snumber.Forthecalculationof mfp,theestimateofd=3.70×10 8cmforairisadoptedfromRef.21;M=28.00g/moleandρ=1.11557×10 4g/cm3wereeasilyquanti edforthemixturefromthePREMIXcalculations.Theestimaterevealsthat mfp=5.87×10 5cm,whichisroughlyoneorderofmagnitudesmallerthanthecontinuum-based finest.
Followingthesameprocedure,acomparisonbetweenthepredicted nestlengthscale finest,themeanfreepathlengthscale mfp,andthereactionzonelength reactionoverawiderangeofpressuresispresentedinFig.6.Itrevealsthattheestimated nestlengthscaleiswellcorrelatedwiththemeanfreepathandthatboth mfpand finestdecreasesimilarlyaspressureisincreased.Thisisconsistentwiththefactthattheparametersusedintheconstitutivemodelsforthecontinuumtheoryhaveastheirfoundationtheaveragednatureofthemorefundamentalcollisiontheory.Inaddition,both mfpand finestareatleastthreeordersofmagnitudelessthanthereactionzonelength reaction.
Thisapproachhasbeenextendedtoseveralhydrocarbonmixtures(methane,ethane,propane,ethylene,andacetylene),awiderangeoffuel-airratios,andanotherreactive owcase,theChapman-Jouguetdet-onation.Severaldetailedkineticsmodelshavebeenadopted(e.g.GRI-3.0,GRI-1.2).TheresultsoftheseextensionsaregivenindetailinRef.8.Itwasfoundthattheapriorimeanfreepathestimatepredictedthe nestlengthscaleaccuratelyforallcases. 23
http://parisonwithPreviouslyPublishedResults
Thoughthisworkfocusesonestimatingthelengthscalesofone-dimensionalsteadylaminarpremixed ames,theestimatesprovideboundsforotherproblemswheremulti-dimensionalandunsteadye ectsaresimulated.Inthissection,acomparisonbetweenthepredicted nestlengthscaleandtheutilizeddiscretizationinsomeofthebestcalculationsoflaminarpremixed amesinhydrogen-airmixturesispresented.TheresultsofthesecalculationsaresummarizedinTable1,whichisorganizedsuchthatforeachstudytheinitialmixturemolarratio,temperature,pressure,reactionzonelength reaction,estimatedmeanfreepathlength mfp, nestlengthscale finestpredictedbythegeneralizedeigenvalueanalysis,andgridresolution xemployedarelisted,respectively.Inallcases,thepredicted nestlengthscalesareatthemicron-level,andtheyarewellcorrelatedwiththeassociatedcuto lengthscalesadmittedbythecontinuumtheory.
KattaandRoquemore22investigatedthestructureofanaxi-symmetricpremixedhydrogen-airjet ameusingatime-dependenttwo-dimensionalalgorithm.Theutilizeddiscretizationwasnonuniform,andtheminimumgridsizeintheaxialdirectionwas2.50×10 2cm.ThedetailedkineticsmodelconsistedofN=11speciesandJ=20reversiblereactions.Ithasatypographicalerrorinreaction5 6whichisunbalanced.ThiserroriscorrectedbyreturningtotheworkofWestbrook23andadoptingthecorrespondingreactions.Thieleetal.24usedatime-dependenttwo-dimensionalmodeltosimulatethespark-ignitioninaquiescenthydrogen-airmixturedescribedbyadetailedkinetics.ThereactionmechanismconsistsofN=9speciesandJ=38irreversiblereactions,adoptedfromtheworkofWarnatzetal.25Althoughthegriddiscretizationinthisstudyisnotmentioned,thepredictedrequiredlengthscale,7.56×10 4cm,tofullyresolvesuchasystemwasbeyondtheexistingcomputationalcapabilities.
PatnaikandKailasanath26usedadetailedkineticsmodelextractedfromtheworkofBurksandOran27tosimulateatwo-dimensionalburner-stabilizedhydrogen-air ame.TheextractedmodelconsistsofJ=48elementaryreactionsinvolvingN=9species,buttheoriginalmodelhastypographicalerrorsinreactions
4and12,whichareunbalanced.TheseerrorsarecorrectedbyreturningtotheworkofBaulchetal.28andHampsonetal.29andadoptingthecorrespondingreactions.Thespatialresolutioninthisstudywasnonuniform,thoughtheaveragegridsizewas x=3.54×10 2cm.
ThemainresultfromTable1isthatnoneofthesestudieshaveutilizedagridresolution xthatislessthanorequaltothe nestlengthscale finestwhichisrequiredtohaveunambiguouslyresolvedresultsforasteadyone-dimensionallaminarpremixed ameincomparablemixtureunderthesameconditions.Moreover,theutilizedgridresolution xisatleasttwoordersofmagnitudegreaterthan finest.Ineachstudy,di erentphysicalphenomenaaresimulated,andthemathematicalmodelsthatareusedvary,butthecommonalityinallstudiesistheusageofadetailedkineticsmodeltosimulates ameinapremixedhydrogen-airmixture.
Lastly,ourresultsareinroughagreementwithindependentestimatesfoundindirectnumericalsimulation(DNS)ofturbulentreacting ows.Inarecentstudy,Chenetal.,30presentatwo-dimensionalDNSofautoignitionatconstantvolumeandhighpressureofhydrogen-airdescribedbydetailedkinetics.Thedomainsizewas4.1mm×4.1mm,andthecalculationsrequiredagridresolutionof x=4.30×10 4cmtoresolvetheignitionfronts,whichissimilarinmagnitudetothe nestlengthscalepredictedhere.
V.Conclusion
Thepresentone-dimensionalsteadycalculationsrevealthatforanadiabaticlaminarpremixed amefreelypropagatinginstoichiometricmixturesofhydrogen-airdescribedbydetailedkineticsandmulti-componenttransport,therequiredgridresolutiontoformallyresolvethemodeled owstructuresisatthemicron-level.Thislengthscalehasbeenpredictedbyutilizingarigorouseigenvalueanalysis.Thelengthscalepredictionsarefullyre ectiveoftheunderlyingphysicsandnottheparticularnumericalmethodchosen.Thishasbeenveri edbyshowingthatthe nestlengthscaleiswell-correlatedwiththemeanfreepathcuto lengthscaleestimatedfromkinetictheory.Thus,itispossibletouseasimplemeanfreepathcalculationasanaprioriestimateofthelowerboundforgriddiscretization.Relatedcalculationsofunsteadyandmulti-dimensionallaminar amesintheliteraturetypicallyemploymuchlargerdiscretizationsthansuggestedbythepresentanalysis.Thefullconsequencesofthisunder-resolutionawaitrigorouslinearandnon-linearstabilityanalysisaswellasDNSinordertobedetermined.
Acknowledgments
TheauthorsrecognizethesupportoftheChemistryDivisionofArgonneNationalLaboratoryandhelpfulconversationswithDr.MichaelJ.DavisofArgonne.The rstauthoracknowledgesthepartialsupportofthisworkfromtheCenterforAppliedMathematicsatUniversityofNotreDame.
References
W.L.,andTrucano,T.G.,“Veri cationandValidationinComputationalFluidDynamics,”Progressin
AerospaceScience,Vol.38,No.3,2002,pp.209-272.
2Powers,J.M.,andPaolucci,S.,“AccurateSpatialResolutionEstimatesforReactiveSupersonicFlowwithDetailedChemistry,”AIAAJournal,Vol.43,No.5,2005,pp.1088-1099.
3Powers,J.M.,andPaolucci,S.,“AccurateEstimatesofFineScaleReactionZoneThicknessesinHydrocarbonDetona-tions,”AIAA2006-0950,2006.
4Smooke,M.D.,Miller,J.A.,andKee,R.J.,“DeterminationofAdiabaticFlameSpeedsbyBoundaryValueMethods,”CombustionScienceandTechnology,Vol.34,Nos.1-6,1983,pp.79-90.
5Dixon-Lewis,G.,“FlameStructureandFlameReactionKinetics.I.SolutionofConservationEquationsandApplicationtoRichHydrogen-OxygenFlames,”ProceedingsoftheRoyalSocietyofLondon.SeriesA,Vol.298,No.1455,1967,pp.495-513.
6Bird,R.B.,Stewart,W.E.,andLightfoot,E.N.,TransportPhenomena,JohnWiley,NewYork,1960,pp.554-591.7Merk,H.J.,“TheMacroscopicEquationsforSimultaneousHeatandMassTransferinIsotropic,ContinuousandClosedSystems,”AppliedScienti cResearch,A,Vol.8,No.1,1959,pp.73-99.
8Al-Khateeb,A.N.,Powers,J.M.,andPaolucci,S.,“LengthScaleIssuesinCombustionModelling,”CombustionTheoryandModelling,submittedforpublication.
9Singh,S.,Rastigejev,Y.,Paolucci,S.,andPowers,J.M.,“ViscousDetonationinH-O-ArUsingIntrinsicLow-22
DimensionalManifoldsandWaveletAdaptiveMultilevelRepresentation,”CombustionTheoryandModelling,Vol.5,No.2,2001,pp.163-184.
10Williams,F.A.,CombustionTheory,Addison-Wesley,RedwoodCity,1985,pp.1-18.1Oberkampf,
R.J.,Coltrin,M.E.,andGlarborg,P.,ChemicallyReactiveFlow:TheoryandPractice,JohnWiley,Hoboken,NJ.,
2003,pp.649-683.
12Golub,G.H.,andVanLoan,C.F.,MatrixComputations,JohnHopkinsUniversity,MD.,1983,pp.251-266.
13Miller,J.A.,Smooke,M.D.,Green,R.M.,andKee,R.J.,“KineticModelingofTheOxidationofAmmoniainFlames,”CombustionScienceandTechnology,Vol.34,Nos.1-6,1983,pp.149-176.
14Kee,R.J.,andMiller,J.A.,“ComputationalModelingofFlameStructure,”PhysicaDVol.12,Nos.1-3,1984,pp.198-211.
15Aris,R.,Vectors,Tensors,andtheBasicEquationsofFluidMechanics,Dover,NY.,1989,pp.245-253.
16Kee,R.J.,Grcar,J.F.,Smooke,M.D.,andMiller,J.A.,“AFortranProgramforModelingSteadyLaminarOneDimensionalPremixedFlames,”SandiaNationalLabs.,Rept.SAND85-8240,Livermore,CA.,1992.
17Kee,R.J.,Rupley,F.M.,andMiller,J.A.,“Chemkin-II:AFortranChemicalKineticsPackagefortheAnalysisofGasPhaseChemicalKinetics,”SandiaNationalLabs.,Rept.SAND89-8009B,Livermore,CA.,1992.
18Kee,R.J.,Rupley,F.M.,andMiller,J.A.,“TheChemkinThermodynamicDataBase,”SandiaNationalLabs.,Rept.SAND87-8215B,Livermore,CA.,1992.
19Kee,R.J.,Dixon-Lewis,G.,Warnatz,J.,Coltrin,M.E.,andMiller,J.A.,“AFortranComputerCodePackagefortheEvaluationofGas-PhaseMulticomponentTransportProperties,”SandiaNationalLabs.,Rept.SAND86-8246,Livermore,CA.,1991.
20Dixon-Lewis,G.,“KineticMechanism,StructureandPropertiesofPremixedFlamesinHydrogen-Oxygen-NitrogenMixtures,”PhilosophicalTransactionsoftheRoyalSocietyofLondon.SeriesA,Vol.292,No.1388,1979,pp.45-99.
21Vincenti,W.G.,andKruger,C.H.,IntroductiontoPhysicalGasDynamics,JohnWiley,NY.,1965,pp.14-26.
22Katta,V.R.,andRoquemore,W.M.,“NumericalStudiesonTheStructureofTwo-DimensionalH/AirPremixedJet2
Flame,”CombustionandFlame,Vol.102,Nos.1-2,1995,pp.21-40.
23Westbrook,C.K.,“HydrogenOxidation-KineticsinGaseousDetonations,”CombustionScienceandTechnology,Vol.29,Nos.1-2,1982,pp.67-81.
24Thiele,M.,Warnatz,J.,Dreizler,A.,Lindenmaier,S.,Schießl,R.,Maas,U.,Grant,A.,andEwart,P.,“SparkIgnitedHydrogen/AirMixtures:TwoDimensionalDetailedModelingandLaserBasedDiagnostics,”CombustionandFlame,Vol.128,Nos.1-2,2002,pp.74-87.
25Warnatz,J.,Maas,U.,andDibble,R.W.,Combustion,SpringerVerlag,Berlin,1999,pp.65-84.
26Patnaik,G.,andKailasanath,K.,“NumericalSimulationsofBurner-StabilizedHydrogen-AirFlamesinMicrogravity,”CombustionandFlame,Vol.99,No.2,1994,pp.247-253.
27Burks,T.L.,andOran,E.S.,“AComputationalStudyofTheChemicalKineticsofHydrogenCombustion,”NavalResearchLab.,NRLMemorandumRept.4446,Washington,D.C.,1981.
28Baulch,D.L.,Drysdale,D.D.,Horne,D.G.,andLloyd,A.C.,EvaluatedDataforHighTemperatureReactions,Butterworth,London,1972.
29Hampson,R.F.,Braun,W.,Brown,R.L.,Garvin,D.,Herron,J.T.,Huie,R.E.,Kurylo,M.J.,Laufer,A.H.,McKinley,J.D.,Okabe,H.,Scheer,M.D.,Tsang,W.,andStedman,D.H.,“SurveyofPhotochemicalandRateDataforTwenty-EightReactionofInterestinAtmosphericChemistry,”JournalofPhysicalandChemicalReferenceData,Vol.2,No.2,1973,pp.268-312.
30Chen,J.H.,Hawkes,E.R.,Sankaran,R.,Mason,S.D.,andIm,H.G.,“DirectNumericalSimulationofIgnitionFrontPropagationinaConstantVolumewithTemperatureInhomogeneities.I.FundamentalAnalysisandDiagnostics,”CombustionandFlame,Vol.145,Nos.1-2,2006,pp.128-144.11Kee,
http://parisonoflengthscalesamongvariousmodelsthatusedetailedkineticstodescribealaminarpremixedhydrogen-air ame.Ref.
22
24
26Mixturemolarratio1.26H2+O2+3.76N21.19H2+O2+3.76N2
0.59H2+O2+3.76N2To,(K)4.00×1023.05×1023.50×102po,(atm)1.000×1000.987×1001.000×100 reaction,(cm)1.52×1011.31×1011.49×101 mfp,(cm)4.33×10 53.99×10 57.84×10 6 finest,(cm)8.05×10 47.56×10 44.35×10 5 x,(cm)2.50×10 2—3.54×10 2
x[cm]
Figure1.Temperatureandspeciespro lesvs.distanceinastoichiometrichydrogen-air amefornumericalveri cation,equivalenttopredictionsofSmookeetal.,4To=298K,po=1atm.
T
[K]χi
S[cm/sec]χH2
http://parisonofpredictionsof amespeedvs.theunburneddiatomichydrogenmolefractionwiththeexperimentaldatacompiledbyDixon-Lewis,20To=298K,po=1atm.
10
10 5Yi
101010
10101010101010x[cm]
Figure3.Speciesmassfractionvs.distanceforastoichiometrichydrogen-air ame,To=800K,po=1atm.
Figure4.Temperaturevs.distanceforthestoichiometrichydrogen-air ame,To=800K,po=1atm.
108
10
6
104
[cm]102
i
100
10 2
10 4
10 510 410 310 210 1100101102
x[cm]
Figure5.Predictedlengthscalesoverwhichstoichiometrichydrogen-air ameevolvevs.distance,To=800K,po=1atm.
Figure6.Thereactionzonelength,the nestlengthscalepredictedbyeigenvalueanalysis,andthemeanfreepathvs.pressureforstoichiometrichydrogen-air ame,To=800K.