高中数学教案-人教A版必修5(2)——数列(二)
时间:2025-02-22
时间:2025-02-22
新人教A版必修1、必修二、必修三、必修四、必修五以及选修系列教案
第二课时 数 列(二)
教学目标:
了解数列的递推公式,明确递推公式与通项公式的异同,会根据数列的递推公式写出数列的前n项;提高学生的推理能力,培养学生的应用意识.
教学重点:
1.数列的递推公式.
2.根据数列的递推公式写出数列的前n项.
教学难点:
理解递推公式与通项公式的关系.
教学过程:
Ⅰ.复习回顾
上节课我们在学习函数的基础上学习了数列及有关概念,下面先来回顾一下上节课所学的主要内容.
数列的定义、项的定义、数列的表示形式、数列的通项公式及数列分类等等.
Ⅱ.讲授新课
我们为什么要学习有关数列的知识呢?那是因为在现实生活中,我们经常会遇到有关数列的问题,学习它,研究它,主要是想利用它来解决一些实际问题,让其为我们的生活更好地服务.也就是说,我们所学知识都来源于实践,最后还要应用于生活.下面,我们继续探讨有关数列的问题.
首先,请同学们来看一幅钢管堆放示意图.
模型一: 自上而下:
第一层钢管数为4;即:1 4=1+3,
第二层钢管数为5;即:2 5=2+3
第三层钢管数为6;即:3 6=3+3,
第四层钢管数为7;即:4 7=4+3
第五层钢管数为8;即:5 8=5+3,
第六层钢管数为9;即:6 9=6+3
第七层钢管数为10;即:7 10=7+3
若用an表示自上而下每一层的钢管数,n表示层数,则可得出每一层的钢管数可构成一数列,即:4,5,6,7,8,,9,10,且an=n+3(1≤n≤7,n∈N*)
同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.
模型二:自上而下
第一层钢管数为4;
第二层钢管数为5=4+1;
第三层钢管数为6=5+1;
第四层钢管数为7=6+1;
第五层钢管数为8=7+1;
第六层钢管数为9=8+1;
第七层钢管数为10=9+1.
即:自上而下每一层的钢管数都比上一层钢管数多1.
若用an表示每一层的钢管数,则a1=4;
a2=5=4+1=a1+1;a3=6=5+1=a2+1;
a4=7=6+1=a3+1;a5=8=7+1=a4+1;
新人教A版必修1、必修二、必修三、必修四、必修五以及选修系列教案
a6=9=8+1=a5+1;a7=10=9+1=a6+1;
即:an=an-1+1(2≤n≤7,n∈N*)
对于上述所求关系,若知其第1项,即可求出其他各项.看来,这一关系也较为重要.这一关系,咱们把它称为递推关系,表示这一关系的式子,咱们把之称为递推公式.
1.定义
递推公式:如果已知数列{an}的第1项(或前n项),且任一项an与它的前一项an-1(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.
说明:数列的递推公式揭示了数列的任一项an与它的前一项an-1(或前n项)的关系,也是给出数列的一种重要方法.
下面,我们结合例子来体会一下数列的递推公式.
2.例题讲解
1[例1]已知数列{an}的第1项是1,以后的各项由公式an=1+ 给出,写出这个an-1
数列的前5项.
1分析:题中已给出{an}的第1项即a1=1,递推公式:an=1+ an-1
113158解:据题意可知:a1=1,a2=1+=2,a3=1+=,a4=1+= ,a5=. a1a22a335
[例2]已知数列{an}中,a1=1,a2=2,an=3an-1+an-2(n≥3),试写出数列的前4项. 解:由已知得a1=1,a2=2,a3=3a2+a1=7,a4=3a3+a2=23
Ⅲ.课堂练习
写出下面数列{an}的前5项.
1.a1=5,an=an-1+3(n≥2)
解法一:a1=5;a2=a1+3=8;
a3=a2+3=11;a4=a3+3=14;
a5=a4+3=17.
评析:由已知中的a1与递推公式an=an-1+3(n≥2),依次递推出该数列的前5项,这是递推公式的最基本的应用.
是否可利用该数列的递推公式而求得其通项公式呢?
请同学们再仔细观察此递推公式.
解法二:由an=an-1+3(n≥2),得an-an-1=3
则a2-a1=3,a3-a2=3,a4-a3=3,a5-a4=3,……,an-1-an-2=3,an-an-1=3 将上述n-1个式子左右两边分别相加,便可得an-a1=3(n-1),即an=3n+2(n≥2) 又由a1=5满足上式,
∴an=3n+2(n≥1)为此数列的通项公式.
2.a1=2,an=2an-1(n≥2)
解法一:由a1=2与an=2an-1(n≥2)
得:a1=2,a2=2a1=4,a3=2a2=8,a4=2a3=16,a5=2a4=32.
an解法二:由an=2an-1(n≥2),得=2(n≥2),且a1=2 an-1
an-1aaaa则: =2,=2, =2=2, =2 a1a2a3an-2an-1
若将上述n-1个式子左右两边分别相乘,便可得 a- =2n1 a1
新人教A版必修1、必修二、必修三、必修四、必修五以及选修系列教案
即:an=2n(n≥2),又由a1=2满足上式
∴an=2n(n≥1)为此数列的通项公式.
∴a2=22=4,a3=23=8,a4=24=16,a5=25=32.
13.a1=1,an=an-1+ (n≥2) an-1
解:由a1=1,an=an-1+1
an-1 (n≥2),
1得a1=1,a2=a1+=2, a1
15a3=a2+, a22
15229a4=a3++ = , a32510
12910941a5=a4+=+ = a41029290
Ⅳ.课时小结
这节课我们主要学习了数列的另一种给出方法,即递 …… 此处隐藏:2127字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:4油气藏描述的地质资料
下一篇:建设工程内部承包合同