冷挤压模具材料的选择及工艺设计(活塞销冷挤压模具) (2)

发布时间:2024-11-17

专业课程设计任务书

学生姓名: 班级:

设计题目:冷挤压模具材料的选择及工艺设计(活塞销冷挤压模具)

设计内容:

1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。

2、选材,并分析选材依据。

3、制订零件加工工艺路线,分析各热加工工序的作用。

4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分析,并

分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。

5、分析热处理过程中可能产生的缺陷及补救措施。

6、分析零件在使用过程中可能出现的失效方式及修复措施。

1

目录

0前言 3

1活塞销冷挤压模具工作条件及性能要求 4

1.1活塞销冷挤压模具工作条件 4

1.2冷挤压模具的性能要求 4

1.2.1冷挤压模具的机械性能要求 4

1.2.2冷挤压模具的技术性能要求 5

2.活塞销冷挤压模具材料及选用方法 6

2.1活塞销冷挤压模具材料的要求 .6

2.2活塞销冷挤压模具常用材料及选择 6

3活塞销冷挤压模具热处理工艺制定及分析 9

3.1活塞销冷挤压模具的加工工艺路线 9

3.2锻 造 9

3.3 20CrMnTi热处理 9

3.3.1 20CrMnTi退火(预处理) 9

3.3.2 20CrMnTi工艺 (渗碳及回火淬火等工艺) 10

4活塞销冷挤压模具在使用过程中可能出现的失效方式以及提高寿

命的方法 12

5 心得体会 16

6 参考文献. 17

2

0前言

活塞销(英文名称:Piston Pin)是装在活塞裙部的圆柱形销子,它的中部

穿过连杆小头孔,用来连接活塞和连杆,把活塞承受的气体作用力传给连杆。

为了减轻重量,活塞销一般用优质合金钢制造,并作成空心。活塞销用来连接

活塞和连杆,并将活塞承受的力传给连杆或相反。活塞销在高温条件下承受很

大的周期性冲击负荷,且由于活塞销在销孔内摆动角度不大,难以形成润滑油

膜,因此润滑条件较差。为此活塞销必须有足够的刚度、强度和耐磨性,质量

尽可能小,销与销孔应该有适当的配合间隙和良好的表面质量。在一般情况

下,活塞销的刚度尤为重要,如果活塞销发生弯曲变形,可能使活塞销座损

坏.。活塞销孔是活塞推动点的回转部位,它是直线运动与旋转运动的交换点。

通过它将活塞与连杆小头组合起来,将直线运动转换为圆周运动。由此可见,

销孔在活塞连杆机构中十分重要。它的正常与否关系到活塞在气缸内能否耐久

运行。在更新活塞时应注意以下要求,才能保障活塞销孔及销在发动机里起到

应有的作用。绞削全浮式活塞销孔时应保证两孔的同心度,两孔的偏摆和不同

心度应控制在0.015毫米之内。销与孔的间隙应在冷态时不可转动,在热态时

(水沸点)可转动。销与孔的接触面应在800/0以上,要光洁、平整。这样就可

避免活塞销敲击装配。销与孔靠合面不良会加速磨损,造成活塞销异响。两孔

不同心而摆差较大者,不但活塞销与孔磨损加速,而且活塞与气缸壁磨损增

加。如果销与孔过紧,就会产生活塞粘缸,导致气缸拉缸。如果活塞销孔长期

松旷不加纠正,那就会导致销磨断卡簧,出现活塞销拉缸的严重故障。活塞销

是一种细长和空心的零件,若采用切削加工方法制造,将耗费大量的金属新材

料和工时。为了提高材料利用率和生产效率,采用了先进的冷挤压新工艺。采

用这种工艺,能使金属的纤维组织在强压力作用下不被破坏,并使金属产生适

宜的塑形流动,形成所需要的形状,达到少无切削的目的。此外,冷挤压模具

寿命较高,零件质量稳定,故采用冷挤压生产活塞销是既经济又合理的先进加

工方法。

3

1活塞销冷挤压模具工作条件及性能要求

1.1活塞销冷挤压模具工作条件

冷挤压是在常温下对金属材料进行塑性变形,其单位挤压力相当大,同时

由于金属材料的激烈流动所产生的热效应可使模具工作部分温度高达200℃以

上,加上剧烈的磨损和反复作用的载荷,模具的工作条件相当恶劣。活塞的工

作条件十分恶劣。活塞在高温、高压、高速、润滑不良的条件下工作。活塞直

接与高温气体接触,瞬时温度可达2500K以上,因此,受热严重,而散热条件

又很差,所以活塞工作时温度很高,顶部高达600~700K,且温度分布很不均

匀;活塞顶部承受气体压力很大,特别是作功行程压力最大,汽油机高达3~

5MPa,柴油机高达6~9MPa,这就使得活塞产生冲击,并承受侧压力的作用;

活塞在气缸内以很高的速度(8~12m/s)往复运动,且速度在不断地变化,这就

产生了很大的惯性力,使活塞受到很大的附加载荷。活塞在这种恶劣的条件下

工作,会产生变形并加速磨损,还会产生附加载荷和热应力,同时受到燃气的

化学腐蚀作用。它要承受高温(最高达2500℃以上)、高压(大气压力的40~

60倍)、高速(12~20 m/s)、周期性冲击及化学腐蚀。例如一个直径90 mm

的活塞,大约要承受3吨的压力,可见活塞确实是重担在肩。为了减轻重量和

惯性力,活塞一般用铝合金铸造,有些赛车的活塞采用锻造,结实耐用。

1.2冷挤压模具的性能要求

1.2.1冷挤压模具的机械性能要求

(1)模具应有足够的强度和刚度,要在冷热交变应力下正常工作;

(2)模具工作部分零件材料应具有高强度、高硬度、高耐磨性,并有一定的

韧性;

(3)凸、凹模几何形状应合理,过渡处尽量用较大的光滑圆弧过渡,避免应

力集中;

(4)模具易损部分更换方便,对不同的挤压零件要有互换性和通用性;

(5)为提高模具工作部分强度,凹模一般采用预应力组合凹模,凸模有时也

采用组合凸模;

4

(6)模具工作部分零件与上下模板之间一定要设置厚实的淬硬压力垫板,以

扩大承压面积,减小上下模板的单位压力,防止压坏上下模板;

(7)上下模板采用中碳钢经锻造或直接用钢板制成,应有足够的厚度,以保

证模板具有较高的强度和刚度。

1.2.2 冷挤压模具的技术性能要求

(1)对模具要求高。冷挤压时毛坯在模具中受三向压应力而使变形抗力显著

增大,这使得模具所受的应力远比一般冲压模大,冷挤压钢材时,模具所受的

应力常达2000MPa~2500MPa。

(2)需要大吨位的压力机。由于冷挤压时毛坯的变形抗力大,需用数百吨甚

至几千吨的压力机。

(3)毛坯在挤压前需进行表面处理。

(4)不宜用于高强度材料加工。

典型的冷挤压模具由以下几部分组成:

工作部分 如凸模、凹模、顶出杆等;

传力部分 如上、下压力垫板;

顶出部分 如顶杆、反拉杆、顶板等;

卸料部分 如卸料板、卸料环、拉杆、弹簧等;

导向部分 如导柱,导套、导板、导筒等;

紧固部分 如上、下模板、凸模固定圈、固定板、压板、模柄、螺钉等。

下图为实心件正挤压

5

图1 典型冷挤压模具

2.冷挤压模具材料及选用方法

冷挤压时,模具型腔中单位挤压力可高达2000~2500MPa,还要经受着极

高的摩擦阻力和温度变化,因此冷挤压模具的工作条件是十分恶劣的。合理的

选择冷挤压模具的材料比起其他模具显得更为重要。

2.1冷挤压工作零件材料的要求

(1)必须具有高强度和高硬度,这样在挤压中可以避免工作零件本身的塑性

变形、破坏和磨损。

(2)应具有相当高的韧性,可以避免由于冲击、偏心载荷,疲劳应力集中而

引起的折断和开裂破坏。

(3)必须具有较高的耐磨性,使模具具有较高的使用寿命,以保证挤压件的

尺寸精度。

(4)具有足够的耐热性能。在冷挤压中,模具工作零件的局部温度可高达

300℃左右,有时甚至更高,因此要求材料在这样的高温状态下硬度保持不变。

(5)材料必须有良好的加工性能,如在热加工时,锻造性能要好;机加工时

要容易进行切削;热处理时,应有较宽的温度区间,变形和热裂倾向小。 当

然,在大多数情况下,某种模具钢材不可能全部满足上述要求,应该根据具体

的挤压情况来选择最能符合使用条件的材料。

2.2冷挤压工作零件常用材料及选择

(1)碳素工具钢 碳素工具钢是冷挤压模具钢中价格最低廉的钢种。T10A是

常用的碳素工具钢牌号。其优点是加工及热处理方便,具有良好的切削和耐磨

性能,但缺点是淬透性、强韧性及耐热性能差、热处理变形大、使用寿命低。

因此只能用于尺寸较小、形状简单、负载不大的模具零件,如压力垫板、顶料

杆,纯铝、紫铜等软材料挤压凹模。

(2)高合金工具钢 含铬量为12%的高合金工具钢是冷挤压模具材料中普遍

采用的高碳高铬钢种。Cr12、Cr12Mo和Cr12MoV是经常使用的牌号。该类钢热

处理变形小,淬透性好,耐磨性较高,韧性优良,适宜制作冷挤压凸模和凹

模。不过这类钢的碳化物偏析较为严重,尤其是大尺寸的材料,在制造模具之

6

前要进行改锻,使碳化物分布均匀(1~3级),否则在使用中严重影响模具使

用寿命,因此它比较适宜于作为有预应力圈的内凹模材料。

(3)高速工具钢 常用高速工具钢的牌号有:W18Cr4V和W6Mo5Cr4V2等。该

类钢种具有很高的强度、良好的耐磨性和韧性,尤其是高温硬度高、热硬性极

好,抗软化变形能力强,是制造凸模的优良材料。但是高速工具钢的碳化物分

布不均匀,这种不均匀性随着钢材截面尺寸的增大而提高,使其力学性能下

降。在模具结构允许的前提下,应尽量选用小尺寸的高速工具钢原始棒料来制

造模具零件。

(4)硬质合金 一般用于冷挤压模具工作零件的硬质合金为钨钴系硬质合

金,常有牌号有YG15、YG20、YG25,其中数字表示含钴量的百分比。如YG15

表示含钴量15%,其余为钛化钨。硬质合金具有极高的硬度、良好的红硬性、

较小的膨胀系数、足够的强度,并且耐磨、耐高温,是优良的模具材料。但是

硬质合金抗弯、抗拉强度低,所以常用作凹模或凹模镶块材料。

(5)钢结硬质合金 钢结硬质合金是以铁粉加少量的合金元素(如铬铁、

钼铁、钒铁和钨等)粉末作粘结剂,以碳化钛为硬质相,用一般粉末冶金方法

烧结而成。由于其基体为钢,因此可以切削加工、焊接、热处理,甚至还可以

进行一定程度的塑性变形。同时又含有大量的碳化钛,从而保留了硬质合金的

高硬度和高耐磨性,并具有硬质合金所没有的较好的抗弯强度和韧性,是一种

新型的冷挤压模具材料。

(6)合金碳素工具钢 在碳素工具钢的基础上加入合金元素,性能与碳素钢

类似。

2.3 20CrMnTi性能特点

2.2 20CrMnTi的成分分析

20CrMnTi的化学成分(wt%)

各合金元素的作用:

C的作用:钢中含碳量增加,硬度、屈服点和抗拉强度升高,但延展性、

7

磁性、可锻性、电导性、塑性、塑性应变比R和冲击性降低。当碳量0.23%超

过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢的含碳量一般不超过

0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀。

此外,碳能增加钢的冷脆性和时效敏感性。

Si的作用:在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有

0.15~0.30%的硅。如果钢中含硅量超过0.50~0.60%,硅就算合金元素。硅能

显著提高钢的弹性极限、屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结

构钢中加入1.0~1.2%的硅,强度可提高15~20%硅和钼、钨、铬等结合,有提

高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1~4%的低碳钢,具有极高

的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。

Mn的作用:在炼钢过程中,锰是良好的脱氧剂和脱硫剂。一般钢中含锰

0.30~0.50%。在碳素钢中加入0.70% 以上时就算“锰钢”,较一般钢量的钢

不但有足够的韧性,且有较高的强度和硬度。提高钢的淬性,改善钢的热加工

性能,如16Mn钢比A3屈服点高40%。含锰11~14%的钢有极高的耐磨性,用于

挖土机铲斗和球磨机衬板等。锰量增高,拉伸强度、韧性、加工性及切削性增

加,延缓硬化,减弱钢的抗腐蚀能力,减少冷热脆性,降低焊接性能,塑性降

低。

P的作用:在一般情况下,磷是钢中有害元素。磷能溶于铁素体,使铁素

体在室温下强、硬度升高增加,塑性降低,发生冷脆,同时也使焊接性能及冷

弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

S的作用:硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延

展性和韧性,在锻造和轧制时造成裂纹。硫偏析现象严重,且很难经扩散退火

完全消除,硫化物夹杂促使钢中形成带状组织,恶化冲压性能。硫对焊接性能

也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于

0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性通常称易切削钢。

Ni的作用:镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高

的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应

尽量采用其他合金元素代用镍铬钢。

Cr的作用:在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但

同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢、

耐热钢的重要合金元素。

Cu的作用:铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工

8

时容易产生热脆铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性

无影响。

Ti的作用:钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力,

降低时效敏感性和冷脆性,改善焊接性能。在Cr18Ni9奥氏体不锈钢中加入适

当的钛,可避免晶间腐蚀。

20CrMnTi的含碳量为0.20%属于低碳钢,渗碳时保证了碳元素的正常渗

入。淬火热处理后心部获得低碳马氏体, 以保证心部具有足够的塑性和韧性,

抵抗冲击载荷。

3 活塞销冷挤压模具的加工工艺

3.1活塞销冷挤压模具的加工工艺路线

根据上述零件技术要求,现拟定如下工艺路线:

下料→锻造模坯→退火→机械粗加工→冷挤压成形→机械精加工→渗碳→

淬火、回火→研磨抛光→装配。

工艺流程虽然不太复杂,但各工序必须有严格的详细的施工说明,这样才

有挤压模具的高质量。如锻造时应根据20Cr钢材料要求制定及执行预热—加热

—始端—中锻的温度、时间及镶拔次数等技术规范。锻后还应放入干燥的石灰

粉中冷却,以防冷却速度过快。

3.2锻 造

模 具 在 热 处 理 前 的原 始 组 织 状 态 和 流 线 方 向对热 处 理 变 形 有 很 大 的

影 响 ,它 不 仅 影 响 模 具 的强 度和 韧 性 ,更 会 对模 具 热 处 理 后 尺 寸 变 化 出

现 各 向异性 ,特 别 是 在 连接 部 位 和转 角 处 ,易 产 生 圆 度 超 差等 质 量 问题 。

因此 ,必 须 对 毛 坯 进 行 反 复 镦 拔 ,使碳 化 物 不 均 匀 性 ≤ 3级 ,流线 与 模 具

工 作 表 面 相 垂直 。锻 造 时 应 注 意 锻 造 温 度 不 易 过 高 ,而 且要 分 段加 热 ,

预 热 温 度 为 8 0 0 ~ 8 5 0 ℃ ,加 热 温 度 为 1 0 5 0~11 00 ℃ ;另 外 终 锻 温 度 也

不 能 过 低 ,一 般 为 8 5 0~9 0 0 ℃ 。始 锻 时 应 轻 打 ,锻 后 应 缓 冷 。

3.3 20CrMnTi热处理

3.3.1 20CrMnTi退火(预处理)

9

Ac1 稍上温度的奥氏体化等温球化退火工艺790℃×1.5h,随炉降至690℃

×3h,再随炉降至600℃,出炉入缓冷。缓冷球化退火时间较长。球化退火可满

足冷拔、冷镦和冷挤压冷变形的需要。

图2 20CrMnTi球化退火工艺曲线

3.3.2 20CrMnTi工艺 (渗碳及回火淬火等工艺)

渗碳

齿加工完以后,进行渗碳。采用井式炉900-920℃渗碳,渗碳时间根据所要

求的渗碳层厚度1.0~1.4mm查表《920℃渗碳时渗层厚度与时间的关系》,确定

为6小时。具体渗碳后该零件组织如图1所示,表层为珠光体与二次渗碳体混

合的过共析组织,其中二次渗碳体呈网状,心部为珠光体与铁素体混合的亚共

析原始组织,中间为过渡区,越靠近表面层铁素体越少。这样渗碳以后,就为

淬火+低温回火工序做好了准备。

10

淬火加低温回火

钢的淬火温度一般可根据Fe-Fe3C相图选择,亚共析钢淬火加热温度选择

Ac3以上30℃~50℃,过共析钢淬火加热温度选择Ac1以上30℃~50℃。根据

渗碳后齿轮的表层含碳量的分布状况及实践经验从920℃预冷到860℃左右进行

油冷可以得到好的效果。加热温度过高或保温时间过长,会引起奥氏体的晶粒

粗大引起过热或晶界氧化并部分熔化的过烧现象。过热时奥氏体的晶粒粗大不

仅降低齿轮力学性能,也容易引起齿轮的变形和开裂。过烧后的工件只能报

废。加热温度过低、保温时间不足会引起硬度不足。故可选择920℃温度渗

碳,预冷860℃左右油冷淬火。淬火冷却速度太快,奥氏体向马氏体组织转变

剧烈、体积收缩,引起很大的内应力,容易造成齿轮的变形和开裂,由于

20CrMnTi是合金钢,淬透性较好,故选择油冷减小冷却速度,防止淬火造成齿

轮变形或开裂。同时也能获得马氏体组织,达到较高的硬度。

淬火后的钢组织是马氏体及少量残余奥氏体,它们都是不稳定的组织,有

向稳定组织转变的趋势,同时淬火时产生内应力。为了减小或消除淬火内应

力,稳定组织和尺寸,获得所需的力学性能,选择在260℃进行4小时低温回

火工艺。低温回火时马氏体中过饱和碳原子以碳化物的形式逐步析出,马氏体

晶格畸变程度减弱,内应力有所降低。此时的回火组织由马氏体和碳化物组

成。虽然马氏体的分解使α-Fe中碳的过饱和程度降低,钢的硬度相应下降,但

析出的碳化物又对基体起强化作用,部分的残余奥氏体分解为回火马氏体,所

以零件仍保持很高的硬度、耐磨性和一定的韧性。经淬火+低温回火热处理后,

11

零件最终组织为:表面为细小的片状回火马氏体及少量的残余奥氏体和碳化

物,硬度为HRC58-62左右,而心部是由回火低碳马氏体、铁素体和细小的珠

光体组成,其硬度为HRC35-45,并且具有较高强度以及足够高韧性和塑性。

符合零件的技术要。

图4 20CrMnTi活塞销渗碳及淬火等热处理曲线

4冷挤压模具在使用过程中可能出现的失效方式以及提高寿命方法

冷挤压模具在使用过程中可能出现的失效方式主要有四种,即磨损、塑性

变形、疲劳破坏和断裂,其中磨损和疲劳破坏属正常失效形式。

4.1磨损

冷挤时,由于被挤材料在模具表面激烈地流动,造成模具工作表面容易磨损,

按照磨损机理的不同,冷挤压模具的磨损又分为粘着磨损、磨料磨损、疲劳磨

损和腐蚀磨损。

4.1.1粘着磨损

由于冷挤时被挤金属在模具表面的激烈流动,所以被挤金属与凹凸模工作表面

产生相对运动,于是分别构成了滑动摩擦付,当表面不平时,便会出现峰顶接

触,由于接触面积小,峰顶压力很高,足以引起塑性变形,导致接触还发生粘

着现象。在相对滑动情况下,粘着点被剪切,塑性材料就会转移到另一工件表

面上,于是出现粘着─剪切─再粘着的循环过程,这就形成了粘着磨损,我们

的凹模芯及凹模出现的“拉毛”现象就属于此类。

引起粘着磨损的有以下几个因素:

12

材料特性

脆性材料比塑性材料的抗粘能力强。

性大的材料组成的摩擦付粘着倾向大,互容性小的材料(异种金属或晶格不相

近的金属)组成的摩擦付粘着倾向力小。

从金相组织上看,多相金属比单相金属粘着倾向力小,化合物相比单相固溶体

粘着倾向小。

因此,对冷挤压毛坯及模具进行表面处理来避免金属相互摩擦。

挤压速度

一般来讲,挤压过程中,挤压速度主要取决于被挤材料的可塑性所允许的变形

速度。对火花塞壳体冷挤压来讲,其速度不宜太快。

表面光洁度

表面光洁度越高,抗粘着磨损能力越强。提高模具表面光洁度,可使接触面积

增大,各点接触压力减小,但过高地提高表面光洁度,因润滑剂不能存储于摩

擦付表面内,反而促进粘着。

温度

由于冷挤时金属流动速度很快,所以产生的热量很大,通常达200-400℃以

上,因此模具材料必须具备高的热稳定性,否则将因模具材料处于回火状态而

降低强度,并促使粘着磨损的产生。

润滑油脂

润滑状态对粘着磨损影响较大,能适应高强度、重载荷的冷挤压油。目前国内

尚在研制中,还有部分依赖进口解决,目前采用的MoS2就是一种良好有润滑

剂。

4.1.2磨粒磨损

冷挤时由于润滑油的不清洁等因素,带有硬的颗粒进入模腔,于是产生微量切

削或刮擦作用而引起模具表面脱落。一般情况,模具材料硬度越高,耐磨性越

好,但在火花塞壳体冷挤中,必须先考虑提高材料强度和毒性,再考虑材料的

硬度,以防脆断或早期破坏。

4.1.3腐蚀磨损

冷挤压中的腐蚀磨损主要是氧化磨损,它是通过氧化物的磨损过程进行的。金

属表面与氧化膜被磨损后又形成新的氧化膜,然后又被磨掉。它与滑动速度、

接触压力、介质状态等有直接关系。

在冷挤过程中,粘着磨损、磨粒磨损和氧化磨损往往是相互伴随发生的。冷挤

压的磨损实际上是一种复合磨损形式,如果稍微处理不当,磨损是相当厉害

的。减少磨损的办法主要是良好合理的设计,降低摩擦,使金属流向合理,提

高模具光洁度,选择合适润滑剂,选用耐磨性好的材料,以提高模具的耐磨

性。

13

4.2 塑性变形

火花塞壳体所需的单位挤压力是很大的,尤以四序为最大,共有420KN,而凸

模主要工作截面直径不到15mm,且最小处仅为Φ8.6mm,在冷挤时所受的负荷

很大,在材料一定的情况下,只要热处理稍有不慎,即可能发生镦粗、折断的

现象。

四序冲头发生镦粗的现象是由于挤压时,它所受的工作应力超过弹性极限,在

最初的几次或几十次便会出现直径漲大0.1或更多,曾发生由于冲头涨大而卡

死,造成模具损坏。镦粗部位一般发生在距工作端部长约1/3-1/4凸模长度的

地方。

防止模具产生塑性变形的方法是选择合适的模具材料,采用先进的热处理工

艺,使其在保持韧性的前提下,尽可能具有足够的强度和硬度。

4.3疲劳破坏

疲劳破坏属于冷挤压模具一种正常的失效形式,它是由于应力的反复作用,在

应力集中部位造成疲劳裂纹,疲劳裂纹扩展而造成断裂破坏,这在凸凹模随处

可见。火花塞壳体冷挤压中,疲劳破坏最多的是四序冲头及四序凹模,这跟它

们的受力状况有关。四序属于复合挤压,先正挤、随后反挤,正挤时,冲头承

受压应力,当同心度不是很高时,还受弯曲应力。反挤时,先承受压应力和弯

曲应力,在回程时还受到拉应力,即冲头呈不对称循环的交变应力作用,从而

导致疲劳裂纹的产生。同时冲头在冷挤过程中,由于火花塞壳体变形时的热

效,应和流动金属与模具表面的摩擦,都有大量的热产生,使冲头温度升高,

通常都在200-400℃以上,从冲头工作端部色看,甚至可达500℃以上。当退出

工作,加润滑剂及工作间隙,模具表面散热降温,这就使冲头表面受到交变的

热应力作用,将导致热疲劳裂纹的产生。凹模在挤压过程中,同时受到径向、

轴向和切向拉应力。径向和切向拉应力是金属变形时对凹模型腔内壁的压力所

造成的,轴向拉应力是由于由于金属剧烈流动与凹模内表面发生强烈摩擦形成

的。同冲头一样,还受到热应力的作用。在这四种应力的反复作用下,在凹模

的内壁易造成径向疲劳裂纹,一般发生在应力集中的部位。

4.4断裂

断裂是冷挤压发生的一种不正常的失效形式,按断裂的性质有韧性断裂和脆性

断裂两种。

韧性断裂是应力超过屈服极限,这在冷挤压中不存在。

冷挤压模具基本上属于脆性断裂,在断裂前没有屈服现象。在火花塞壳体冷挤

压的实践中,我们见到的脆性断裂主要有两种情况:一种情况是机械手失灵造

成冲头及凹模不正常断裂及前序冲头断头被送入后一工序而引起冲头折断。另

一种是由于设计及热处理原因造成不能使用而产生的断裂,四序凹模芯就经常

14

发生。

根据几处的生产实践,冷挤压模具的损坏都与上面所述的四种失效形式相联

系,有的是几种失效形式结合起来产生破坏的,所以提高模具寿命的途径也与

克服和防止这四种失效形式分不开。

4.5提高冷挤压模具寿命的途径

4.5.1模具设计和制造应尽可能避免应力集中

在模具设计时,凸凹模的过渡部位应避免夹角,采用适当的圆弧过渡,以减少

应力集中,模具寿命可大幅度提高。

4.5.2正确选用模具材料和热处理工艺

Cr12类钢模具,抗冲击性高,但它的抗弯强度、耐磨性和高温抗磨性较差。

W18Cr4V及W6Mo5Cr4V2高速钢的抗压强度、抗弯强度、耐磨性、红硬性均高于

Cr12类钢。高速钢在过去主要是用于刀具,做模具少有应用,这是由于人们一

直沿用老工艺,所以寿命总是很低。只是近廿十年来,亚温淬火风行世界各

国。实践证明,高速钢模具亚温淬火后,晶粒度一般在11.5-12级,可获得很

高的韧性,而其它性能指标并不低于老工艺所获得的性能指标。亚温淬火就是

将淬火温度降低20-80℃,此外,采用贝氏体等温淬火也是获得高韧性的一种

热处理方法,使用效果很好。

4.5.3提高模具表面光洁度

提高模具表面光洁度,可以减少突然折断的不正常破坏,特别可以大大提高疲

劳强度。非工作面的光洁度也应达到Ra0.8左右,这样可以避免非工作部位疲

劳裂纹的产生。

4.5.4使模具表面保留残余压应力

由于模具间隙不均或毛坯端面不平等多种原因,导致凸模承受很高的弯曲应

力,使模具表面保留残余压应力有利于防止疲劳破坏。有以下几种方法可使表

面获得残留压应力。

喷丸处理

对模具进行正规淬火回火后,对粗加工表面进行喷丸硬化,然后进行磨光,使

表面具有压应力,其抗弯能力和耐磨性有显著提高。

滚压表面

对模具表面进行滚压,使其光洁度高且有压应力,可明显增加疲劳强度。

4.5.5对凸凹模经常进行去应力回火

疲劳破坏是积累引起的,凸凹模在使用一段时间后,最好能进行消除应力回

火,这对防止疲劳裂纹的产生、提高模具寿命有利。在模具入库前,也应进行

15

一次去除应力回火,延长模具寿命。

4.5.6进行表面处理

对模具进行表面处理不但可提高耐磨性,而且由于表面处理后,表面留有残余

压应力,疲劳强度也得到改善。

表面处理有以下几种方法:

软氮化处理

软氮化处理即低温渗氮。它具有不受钢种限制和处理温度低、时间短等优点,

经软氮化处理的模具表面可获得一层硬而不脆、并有一定韧性的组织(Fe3N的

ε相),因而模具寿命可提高。

滲硼

渗硼是使模具表面获得一层高硬度的金属硼化物,因而能显著提高模具的耐磨

性。

气相沉积

使用气相沉积的方法,使TiC或TiC化合物560℃涂覆在模具表面,能显著提

高模具表面硬度(HV1500以上),且能大大降低摩擦系数,故能有效提高模具

寿命。

5心得体会

首先由衷的感谢老师提供给我们这样一个锻炼自己的机会,经过这几周的

学习,自己感觉收获还是很大的。回顾这几周的课程设计,从选题到自己开始

做,从理论到时间,上网查资料,跟同学商量讨论,所有的一切我都感觉获益

良多,不仅巩固了自己以前学习的知识,而且学到了很多在以前没有记住或者

记得不清楚的地方,还在查资料和选资料的过程中知道了很多在实际生产中的

方法。

从老师布置下来作业,我就开始忙碌了起来。先是看那些题目自己比较感

兴趣,最后确定了装载机从动螺旋锥齿轮,就是感觉装载机自己见过,比较熟

悉它的工作环境,对自己以后分析齿轮的服役条件有些优势,就选了这个题

目。接下来就是上网查资料,确定材料和工艺流程了。热处理本身就是一项复

杂而庞大的工作,网上的各种资料更是浩瀚如海,如何在这么多的资料中选择

自己需要的成了一个难题。衡量再三我决定在中国知网和中国期刊全文数据库

16

冷挤压模具材料的选择及工艺设计(活塞销冷挤压模具) (2).doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219