九年级数学上册 第21章 第9课时 一元二次方程的应用(2)导学案 (新版)新人教版
时间:2025-04-18
时间:2025-04-18
九年级数学上册 第21章 第9课时 一元二次方程的应用(2)导学案 (新版)新人教版
第9课时一元二次方程的应用(2)
1
九年级数学上册 第21章 第9课时 一元二次方程的应用(2)导学案 (新版)新人教版
=
2
九年级数学上册 第21章 第9课时 一元二次方程的应用(2)导学案 (新版)新人教版
3
九年级数学上册 第21章 第9课时 一元二次方程的应用(2)导学案 (新版)新人教版
典例探究答案:
【例1】【解析】设这个两位数字的个位数字是x,则十位数字是(x﹣3),则这个两位数为[10(x﹣3)+x],然后根据一个两位数等于它的个位数字的平方即可列出方程求解.
解:设这个两位数字的个位数字是x,则十位数字是(x﹣3),
4
九年级数学上册 第21章 第9课时 一元二次方程的应用(2)导学案 (新版)新人教版
根据题意得10(x﹣3)+x=x2
原方程可化为:x2﹣11x+30=0,
∴x1=5,x2=6,
当x=5时,x﹣3=2,两位数为25;
当x=6时,x﹣3=3,两位数为36.
答:这个两位数是25或36.
点评:此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
练1.【解析】设这个两位数字的个位数字为x,则十位数字为(x-2),则这个两位数为10(x-2)+x,然后根据这个两位数等于其数字之积的3倍列方程,并解方程即可.
解:设这个两位数字的个位数字为x,则十位数字为(x-2).
根据题意,得10(x-2)+x=3x(x-2),
原方程可化为:3x2-17x+20=0,
因式分解,得(3x-5)(x-4)=0,
解得x1=53,x2=4.
因为x为整数,所以x=5不符合题意,x=4.
10(x-2)+x=24,所以这个两位数是24.
点评:本题考查了一元二次方程的应用中的数字问题.注意:在求得解后,要进行实际意义的检验,舍去不符合题意的解.
练2.【解析】按照相应的运算方法与顺序,让得到的含m的一元二次方程的结果为2,列式求值即可.
解:由题意得:m2+(﹣2m)﹣1=2,
m2﹣2m﹣3=0,
(m﹣3)(m+1)=0,
解得m1=3,m2=﹣1.
故选:D.
点评:考查一元二次方程的应用;理解新定义的运算方法是解决本题的关键.
【例2】【解析】设降价x元,表示出售价和销售量,列出方程求解即可.
解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,
根据题意,得(60﹣x﹣40)(300+20x)=6080,
解得x1=1,x2=4,
又顾客得实惠,故取x=4,定价为:60-4=56(元),
答:应将销售单价定为56元.
点评:本题考查了一元二次方程应用,从题中找到关键描述语,并找出等量关系准确地列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
练3.【解析】(1)销售量=原来销售量﹣下降销售量,据此列式即可;
(2)根据销售量×每斤利润=总利润列出方程求解即可.
解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;(2)根据题意得:(4﹣2﹣x)(100+200x)=300,
解得:x=或x=1,
5
九年级数学上册 第21章 第9课时 一元二次方程的应用(2)导学案 (新版)新人教版
∵每天至少售出260斤,
∴x=1.
答:张阿姨需将每斤的售价降低1元.
点评:本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.
【例3】【解析】(1)设经过x秒,△PBQ的面积等于8cm2.先用含x的代数式分别表示BP 和BQ的长度,再代入三角形面积公式,列出方程,即可求出时间;
(2)设经过y秒,△PBQ的面积等于10cm2.根据三角形的面积公式,列出关于y的一元二次方程,根据△=b2﹣4ac进行判断.
解:(1)设经过x秒,△PBQ的面积等于8cm2.
∵AP=1•x=x,BQ=2x,
∴BP=AB﹣AP=6﹣x,
∴S△PBQ =×BP×BQ=×(6﹣x)×2x=8,
∴x2﹣6x+8=0,
解得:x=2或4,
即经过2秒或4秒,△PBQ的面积等于8cm2.
(2)设经过y秒,△PBQ的面积等于10cm2,
则S△PBQ =×(6﹣y)×2y=10,
即y2﹣6y+10=0,
因为△=b2﹣4ac=36﹣4×10=﹣4<0,
所以△PBQ的面积不会等于10cm2.
点评:本题考查了一元二次方程的应用.关键是用含时间的代数式准确表示BP和BQ的长度,再根据三角形的面积公式列出一元二次方程,进行求解并作出判断.
练4.【解析】(1)设点B将向外移动x米,即BB1=x,B1C=x+0.7,根据勾股定理求出A1C=AC ﹣AA1=﹣0.4=2.在Rt△A1B1C中,由勾股定理得到B1C2+A1C2=A1B12,依此列出
方程方程(x+0.7)2+22=2.52,解方程即可;
(2)设梯子顶端从A处下滑x米,点B向外也移动x米,根据勾股定理可得(x+0.7)2+(2.4﹣x)2=2.52,再解即可.
解:(1)设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=﹣0.4=2.
而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12得方程(x+0.7)2+22=2.52,
解方程得x1=0.8,x2=﹣2.2(不合题意舍去),∴点B将向外移动0.8m.
故答案为(x+0.7)2+22=2.52,0.8,﹣2.2(不合题意舍去),0.8;