证明π是一个超越数~
发布时间:2024-11-10
发布时间:2024-11-10
就是证明π的超越性的一篇文章。。很简短的
TheTranscendenceofπ
SteveMayer
November2006
Abstract
Theproofthatπistranscendentalisnotwell-knowndespitethefactthatitisn’ttoodi cultforauniversitymathematicsstudenttofollow.Thepurposeofthispaperistomaketheproofmorewidelyavailable.Abonusisthattheproofalsoshowsthateistranscendentalaswell.
Thematerialinthesenotesarenotmine;itistakenfromasupplementissuedbyIanStewartasanadjuncttoaRingsandFieldscoursein1970attheUniversityofWarwick.
De nition.AcomplexnumberisalgebraicoverQifitisarootofapolynomialequationwithrationalcoe cients.
Thusaisalgebraiciftherearerationalnumbersα0,α1,...,αnnotall0,suchthatα0an+α1an 1+...+αn 1a+αn=0.
De nition.Acomplexnumberistranscendentalifitisnotalgebraic,soitisnottherootofanypolynomialequationwithrationalcoe cients.
Inprovingthatitisimpossibleto’squarethecircle’byaruler-and-compassconstructionwehavetoappealtothetheorem:
TherealnumberπistranscendentaloverQ
Thepurposeofthissupplementistoindicate,forthosewhomaybeinterested,howthistheoremmaybeproved.
Itispossibletoprovethatthereexisttranscendentalrealnumbersbyusingin nitecardinals,aswas rstdonebyCantorin1874.EarlierLiouville(1844)had∞ actuallyconstructedtranscendentals,forexample10 n!istranscendental.1
n=1
1Aproofcanbefoundathttp://rutherglen.ics.mq.edu.au/math334s106/m2334.Dioph.Liouville.pdf
就是证明π的超越性的一篇文章。。很简短的
However,nonaturallyoccurringrealnumber(suchaseorπ)wasprovedtran-scendentaluntilHermite(1873)disposedofe.πheldoutuntil1882whenLinde-mann,usingmethodsrelatedtothoseofHermite,disposedofthat.In1900DavidHilbertproposedtheproblem:
Ifa,barerealnumbersalgebraicoverQ,ifa=0or1andbisirrational,proveabistranscendental.
Thiswassolvedindependentlyin1934bytheRussian,Gelfond,andaGerman,Schneider.
Beforeprovingtranscendenceofπweshallproveanumberofsimilartheorems,usingsimplerversionsofthe nalmethod,asanaidtocomprehension.Thetoolsneededare rst-yearanalysis.2
Theorem1.πisirrational
+1nProof.LetIn(x)= 1(1 x2)cos(αx)dx
Integratingbypartswehave
α2In=2n(2n 1)In 1 4n(n 1)In 2
whichimpliesthat
α2n+1In=n!(Pnsin(α)+Qncos(α))
wherePn,Qnarepolynomialsofdegree<2n+1inαwithintegercoe cients.Remark.degPn=n,degQn=n 1
bπ,andassumeπisrational,sothatπ=,a,b∈Z2a2n+1bInFrom(*)wededucethatJn=isaninteger.OntheotherhandJn→0n!
asn→∞sincebis xedandInisboundedby
+1 πx dxcos2 1Putα=Jnisaninteger,→0.ThusJn=0forsomen.Butthisintegrandiscontinuous,andis>0inmostoftherange( 1,+1),soJn=0.Contradiction. (*)(n≥2)2Thiswastruein1970.Isitstilltruetoday?
就是证明π的超越性的一篇文章。。很简短的
Theorem2.π2isirrational(soπdoesnotlieinanyquadraticextensionofQ)
aProof.Assumeπ2=,a,b∈Z.bDe ne
xn(1 x)n
,f(x)=n! 2n 2n 2 n0(2n)nf(x)+...+( 1)πf(x)G(x)=bπf(x) π
(superscriptsindicatingdi erentiations).Weseethatthevalueofanyderivativeoffat0or1iseither0oraninteger.AlsoG(0)andG(1)areintegers.Now d[G (x)sin(πx) πG(x)cos(πx)]=G (x)+π2G(x)sin(πx)dx
=bnπ2n+2f(x)sin(πx)sincef(2n+2)(x)=0
=π2ansin(πx)f(x)
sothat
π
01 1 G(x)sin(πx) G(x)cos(πx)ansin(πx)f(x)dx=π0
=0+G(0)+G(1)
=integer.
Butagaintheintegralisnon-zeroand→0asn→∞.Thusagainwehaveacontradiction. Gettingmoreinvolved,now:
Theorem3(Hermite).eistranscendentaloverQ
Proof.Supposeamem+...+a1e+a0=0(ai∈Z).WLOGa0=0
xp 1(x 1)p(x 2)p...(x m)p
De nef(x)=(p 1)!whereforthemomentpisarbitraryandprime.
De neF(x)=f(x)+f (x)+...+f(mp+p 1)(x).
Nowif0<x<m,
mp 1mmp
|f(x)|≤(p 1)!
mmp+p 1
=(p 1)!
就是证明π的超越性的一篇文章。。很简短的
Alsosothatd x(eF(x))=e x[F (x) F(x)]= e xf(x)dx
0jaj je xf(x)dx=aj e xF(x)0
=ajF(0) aje jF(j).
Multiplyingbyejandsummingoverj=0,1,...mweget
m
j=0ajej 0je xf(x)dx=F(0).0
= m j=0ajF(j)ajf(i)(j).+p 1mmp
j=0i=0
Weclaimthateachf(i)(j)isaninteger,divisiblebypexceptwhenj=0andi=p 1.Foronlynon-zerotermsarisefromtermswherethefactor(x j)phasbeendi erentiatedptimes,andthenp!cancels(p 1)!andleavesp,exceptintheexceptionalcase.
WeshowthatintheexceptionalcasethetermisNOTdivisiblebyp.Clearlyf(p 1)(0)=( 1)p...( m)p.WeCHOOSEplargerthanm,whenthisproductcannothaveaprimefactorp.Hencetheright-handsideoftheaboveequationisaninteger=0.Butasp→∞theleft-handsidetendsto0,usingtheaboveestimatefor|f(x)|.Thisisacontradiction. Theorem4(Lindemann).πistranscendentaloverQ
Proof.Ifπsatis esanalgebraicequationwithcoe centsinQ,sodoesiπ(i=√Letthisequationbeθ1(x)=0,withrootsiπ=α1,...,αn.Noweiπ+1=0so
(eα1+1)...(eαn+1)=0
Wenowconstructanalgebraicequationwithintegercoe cientswhoserootsaretheexponentsofeintheexpansionoftheaboveproduct.Forexample,theexponentsinpairsareα1+α2,α1+α3,...,αn 1+αn.TheαssatisfyapolynomialequationoverQsotheirelementarysymmetricfunctionsarerational.Hencetheelementarysymmetricfunctionsofthesumsofpairsaresymmetricfunctionsoftheαsandarealsorational.Thusthepairsarerootsoftheequationθ2(x)=0withrationalcoe cients.Similarlysumsof3αsarerootsofθ3(x)=0,etc.Thentheequation
θ1(x)θ2(x)...θn(x)=0
就是证明π的超越性的一篇文章。。很简短的
isapolynomialequationoverQwhoserootsareallsumsofαs.Deletingzerorootsfromthis,ifany,weget
θ(x)=0
θ(x)=cxr+c1xr 1+...cr
andcr=0sincewehavedeletedzeroroots.Therootsofthisequationarethenon-zeroexponentsofeintheproductwhenexpanded.Calltheseβ1,...βr.Theoriginalequationbecomes
eβ1+...eβr+e0+...e0=0
ie
wherekisaninteger>0
Nowde ne eβi+k=0(=0sincetheterm1...1exists)
f(x)=cxsp 1[θ(x)]p
(p 1)!
wheres=rp 1andpwillbedeterminedlater.
De ne
F(x)=f(x)+f (x)+...+f(s+p)(x). d xeF(x)= e xf(x)asbefore.dx
Hencewehave x
e xF(x) F(0)= e yf(y)dy
Puttingy=λxweget
F(x) eF(0)= x
Letxrangeovertheβiandsum.Since
r
j=1x 01e(1 λ)xf(λx)dλ. eβi+k=0wegetβj 01F(βj)+kF(0)= r j=1e(1 λ)βjf(λβj)dλ.
CLAIM.ForlargeenoughptheLHSisanon-zerointeger.
r f(t)(βj)=0(0<t<p)byde nitionoff.Eachderivativeoforderpormorehasafactorpandafactorcs,sincewemustdi erentiate[θ(x)]penoughtimestoget=0.Andf(t)(βj)isapolynomialinβjofdegreeatmosts.Thesumis
j=1
就是证明π的超越性的一篇文章。。很简短的
symmetric,andsoisanintegerprovidedeachcoe cientisdivisiblebycs,whichciofitis.(symmetricfunctionsarepolynomialsincoe cients=polynomialsincdegree≤s).Thuswehave
r
j=1f(t)(βj)=pktt=p,...,p+s.
ThusLHS=(integer)+kF(0).
f(t)(0)=0
f(p 1)(0)=cscprWhatisF(0)?t=0,...,p 2.(cr=0)
t=p,p+1,....f(t)(0)=p(someinteger)
SotheLHSisanintegermultipleofp+cscprk.Thisisnotdivisiblebypifp>k,c,cr.Soitisanon-zerointeger.ButtheRHS→0asp→∞andwegettheusualcontradiction.
下一篇:高效液相色谱法操作规程