The coupling thermal mechanical and microstructural model fo
时间:2025-04-06
时间:2025-04-06
The coupling thermal mechanical and microstructural model for the FEM simulation of cross wedge roll
JournalofMaterialsProcessingTechnology172(2006)
202–207
Thecouplingthermal–mechanicalandmicrostructuralmodelfor
theFEMsimulationofcrosswedgerolling
XuetongLia, ,MintingWangb,FengshanDua,b
b
CollegeofMechanicalEngineering,YanshanUniversity,Qinhuangdao066004,PRChina
KeyLaboratoryofMetastableMaterialsScienceandTechnology,YanshanUniversity,Qinhuangdao066004,PRChina
Received30April2003;receivedinrevisedform13September2005;accepted19October2005
a
Abstract
ThemicrostructuralevolutionmodelsonAISI5140wereobtainedusingtheGleeble-3500thermo-mechanicalsimulator.Simulationonthecrosswedgerolling(CWR)processhasbeencarriedoutontheplatformof niteelementsoftwareDEFROM-3Dwiththermo-mechanicandmicrostructuralevolutioncoupled.Anddistributionsofthedifferent eld-variablesduringthewholerollingprocessfromthekni ng,guiding,stretchingtosizingstage,suchaseffectivestrain,effectivestrainrateandtemperature,wereobtained.Meanwhile,three-dimensional(3D)distributionofaustenitegrainsizeofworkpiecewasalsoachieved.Itissigni canttounderstandthenet-shapedmechanismandoptimizeCWRtechnology.
©2005ElsevierB.V.Allrightsreserved.
Keywords:CWR;Finiteelementmethod(FEM);Microstructuralevolution;Grainsize
1.Introduction
TheCWRtechniqueisatypicalrotaryformingmethod,whosemanyintegratedvirtuescamefrombothforgingprocessandmetallurgicalrollingtechnology.Owingtosinglecontin-uouslocallargedeformationforworkpiece,CWRhashighproductivity.However,justthisdeformationstylealsoleadstosomeproductdefects[1,2]andsomeengineeringproblems,suchasnecking,surfacespiralandinnerporousvoidandcracks,etc.So,itishelpfulforCWRtechniquedevelopmenttounderstandtherelationshipsamongrollingforces,deformationandinnermicrostructureevolution.Thoughmanyresearchersmadegreateffortsonaboveproblems[3–11]andmicrostructuralevolutionsimulationsforotherformingprocesseshavebeenmade[12,13],fewliteraturesontwo-rollCWRwerereported.
BasedonthesoftwareDEFROM-3D,asimulationmodelfortheCWRprocesshasbeendevelopedbymeansof3Drigid-viscoplasticFEMinthisstudy.Inthismodel,manyfactorsincludingthermal,mechanicalandmicrostructuralevolutionaretakenintoaccountcomprehensively.Themicrostructuralevolu-tionmodelsonAISI5140wereobtainedusingtheGleeble-3500
thermo-mechanicalsimulator.Anddistributionsofthediffer-ent eld-variableswereobtainedaftersimulation.Theseresultsareusefultounderstandthenet-shapemechanismandoptimizeCWRtechnology.
2.FEMandmicrostructuremodelsofCWR
TheCWRreferstoametalformingprocessinwhichacylin-dricalbilletisplasticallydeformedintoanotheraxisymmetricalshapebytheactionofwedgeshapetoolsmovingtangentiallyrelativetoeachother[9].Theroundedbarsareprolongedfreelyintheaxisdirection,andatthesametimeitscross-sectionareaisreducedduringtheformingprocess.
FEMsoftwareDEFORMdevelopedbyBattelColumbuslabintheUnitedStateswasusedtoestablishsimulationmodelfortheCWRprocess.Basedonrigid-viscoplastic niteelementthe-ory,aCWRmodelwiththermo,mechanicsandmicrostructurecoupledhasbeendevelopedandsolvedsuccessfully.Thetech-niqueofautomaticremeshinginDEFORMcanrelievemeshsingularityduringthe niteelementsimulationprocess.2.1.FEMmodel
Correspondingauthor.Tel.:+863358074553.E-mailaddress:xtli@http://(X.Li).
Thereliabilityofthewholesimulationresultsisdirectlyin uencedbytheaccuracyofFEMmodeldeveloped.Andthe
0924-0136/$–seefrontmatter©2005ElsevierB.V.Allrightsreserved.doi:10.1016/j.jmatprotec.2005.10.011
The coupling thermal mechanical and microstructural model for the FEM simulation of cross wedge roll
X.Lietal./JournalofMaterialsProcessingTechnology172(2006)202–207
203
Fig.1.CWRFEMmodel.
geometryprecisionof nalproductdependsmainlyontoolsdesign.CWRtoolsarecharacterizedbymulti-segmentstructureand3Dhigher-ordersurface,whichmakeitdif culttoconstructsolidmodel.Inthispaper,toolssolidmodelbasedonfeatureshasbeensetupwiththeaidofgeneralCADsoftwarePro-E.Consideringhightemperaturedeformation,apartwasde nedasplasticbody.TodecreasecomputerCPUtime,toolswerede nedasrigidbody.FEMmodelofCWRisshowninFig.1.Themaincalculationconditionsareasfollows:workpiecediameter(d0),22mm;workpiecelength(b),35mm;rolldiame-ter(D),500mm;rotationalspeedofroll(ω),10rpm;workpieceinitialtemperature(T0),1000 C;surfaceemissivity(ξ),0.7;areareduction( A),40%;formingangle(α),28 ;spreadingangle(β),6 ;steppedtiltangle(θ),45 .2.2.Microstructrualevolutionmodel
PhysicalsimulationonAISI5140wascarriedoutusingtheGleeble-3500thermo-mechanicalsimulator.Thechemicalcom-positionsofthematerialtestedinweightpercentaredescribedindetailinTable1.
Basedontheresultsfromthermo-simulationexperiments,dynamicrecrystallizationofmediumcarbonsteelAISI5140forCWRprocessoccursunderthedeformationtemperaturefrom1100to900 Candstrainrate10.0–0.1s 1.Theactiva-tionenergyofdynamicrecrystallization,whichiscorrespondingwiththepeakstress,is370.6kJ/mol.TherelationshipbetweenpeakstressσporpeakstrainεpandfactorZisexpressedas:σp=2.626×10 9Z 6.08
(1)
Table1
Chemicalcompositionsofthesample(wt.%)
ElementsC
SiMnPSCrContent
0.41
0.28
0.62
0.018
0.02
0.88
εp=5.162×10 3Z0.128
(2)
whereZisZener Hollomanparameterasfollows.
Z=˙ε
expQ1
RT
(3)
TheexponentialrelationalexpressionbetweendynamicrecrystallizationgrainsizedandZiswrittenas:d=25004.8Z 0.211
(4)
Themodelforrecrystallizationkineticsisobtainedbyobservingthequenchingmicrostructureofthedeformedsam-plesofAISI5140underthedifferenttemperature,strainandstrainrate:
Xv=1 exp[ 20.691(ε ε0)3.492]
(5)
3.Resultsanddiscussion
FEMsimulationapplicationontheCWRprocesscanprovideeffectivefoundationsforanalysisonpartformingprocessanddeterminationofproperparametersoftooldesign,aswellasdi …… 此处隐藏:15522字,全部文档内容请下载后查看。喜欢就下载吧 ……