混合高斯分布的极值分析

时间:2025-04-20

Extreme value analysis of a stochastic process features in many engineering problems.The widely used Poisson approximation can be excessively conservative if a process hasnarrowband traits, as upcrossings tend to manifest in clumps. Over the years, variousauthors have developed techniques for predicting the extremes of narrowbandGaussian processes. A bimodal process,

JournalofSoundandVibration330(2011)3458–3472

ContentslistsavailableatScienceDirect

JournalofSoundandVibration

journalhomepage:http:///locate/jsvi

ExtremevalueanalysisofbimodalGaussianprocesses

Y.M.Lown

SchoolofCivil&EnvironmentalEngineering,NanyangTechnologicalUniversity,BlockN1,NanyangAvenue,Singapore639798,Singapore

articleinfo

Articlehistory:

Received23July2010Receivedinrevisedform27January2011

Accepted29January2011HandlingEditor:L.G.Tham

Availableonline25February2011

abstract

Extremevalueanalysisofastochasticprocessfeaturesinmanyengineeringproblems.ThewidelyusedPoissonapproximationcanbeexcessivelyconservativeifaprocesshasnarrowbandtraits,asupcrossingstendtomanifestinclumps.Overtheyears,variousauthorshavedevelopedtechniquesforpredictingtheextremesofnarrowbandGaussianprocesses.Abimodalprocess,comprisingtwonarrowbandcomponents,isoftenencounteredinpractice,butrelatedstudiesarescarce.Thispaperoutlinesasemi-analyticalapproachforextendinganygivennarrowbandmethodtobimodalprocesses.Themethodissimpletouse,anditssolutionalwaysspecializestotherespectivenarrowbandresultifeithercomponentbecomesin nitesimal.Numericalsimulationsareconductedforveri cation.Theproposedbimodalapproachisfoundtobeingoodagreementwithsimulationresults,providedthattheindividualcomponentextremeshavebeenaccuratelyevaluatedusingasuitabletechnique.

&2011ElsevierLtd.Allrightsreserved.

1.Introduction

Akeyissueinthe eldofrandomvibrationistheextremevalueproblem,whichisconcernedwiththeprobabilitythatarandomstructuralresponsewillexceedaparticularthresholdwithinaprescribedtimeinterval.Anintimatelyrelatedproblem,whichisnotexplicitlyaddressedherein,isthe rstpassageproblemthatinvolvestheprobabilitydistributionofthetimetofailure.Suchisthedif cultyoftheextremevalueproblemthatthereexistsnoexactsolution,evenforthespecialcaseofastationaryGaussianprocess.Consequently,numerousapproximatetechniques(e.g.[1–5])havebeendeveloped,asurveyofwhichcanbefoundinRef.[4].

ThemostcommonapproximationistoassumethatthethresholdcrossingsareindependentandcanbemodeledasaPoissonprocess.ThePoissonapproximationhasseveraladvantageousfeatures.Itissimple,alwaysconservative,anditasymptotestowardstheexactresultasthethresholdgoestoin nity.TheconservatismofthePoissonapproximationismostseverewhentheprocessisnarrowband.Forpracticallevelsofinterest,theassumptionofindependentcrossingsisunsatisfactoryforanarrowbandprocessowingtothetendencyofcrossingstomanifestinclumps.Thatistosay,onceanupcrossingforaparticularlevelhasoccurred,thereisaninordinatelikelihoodthatmoreupcrossingswillfollowshortly.

Inaseminalpaper,Vanmarcke[1]proposedanimprovementtothePoissonapproximation,basedonacascadeofassumptions.Vanmarcke’sapproximationcanbeexpressedinanexplicitform,andhasbeenshowntobereasonablyaccurateforcertainapplications.Theformulationreliessolelyonasinglebandwidthparametertocharacterizetheautocorrelationoftheprocess.Thisisadrawback,asithasbeendemonstrated[3,4]thatprocesseswiththesamebandwidthparameter,butofdifferingspectralshapes,http://ngley[4]developedanapproach

n

Tel.:+6567905265;fax:+6567910676.E-mailaddress:ymlow@ntu.edu.sg

0022-460X/$-seefrontmatter&2011ElsevierLtd.Allrightsreserved.doi:10.1016/j.jsv.2011.01.033

Extreme value analysis of a stochastic process features in many engineering problems.The widely used Poisson approximation can be excessively conservative if a process hasnarrowband traits, as upcrossings tend to manifest in clumps. Over the years, variousauthors have developed techniques for predicting the extremes of narrowbandGaussian processes. A bimodal process,

Y.M.Low/JournalofSoundandVibration330(2011)3458–34723459

thatovercomesthislimitationbyexploitingmoreoftheinformationsuppliedbytheautocorrelationfunction.Moreimportantly,themethodisstraightforwardtoapply.

Inpractice,thespectraldensityofaGaussianresponsemayexhibittwodistinctmodes,whereeachmodeisanarrowbandGaussianprocess.Onewouldexpecttheclumpingofupcrossingstobealsopresentinabimodalprocess,albeitonamoresophisticatedlevel.Abimodalresponsemayarisefromavarietyofphysicalmechanisms.Itmaybetheconsequenceofapeakintheresonantmode,andanotherpeakatthefrequencyoftheappliedforces.Anotherexampleisatwo-degree-of-freedomsystemsubjectedtowhitenoiseexcitation.Theloadingitselfcouldbebimodal;offshorestructuresoccasionallyencounterwaveswithbimodalspectra.Theimportanceofbimodalprocessesisevidencedbythenumerousstudiesonthespectralfatigueanalysisofbimodalprocesses(e.g.[6,7]).Conversely,forthebimodalextremes,onemay ndonlyonepriorinvestigationbyToroandCornell[8].ToroandCornell’s(T–C)methodisageneralizationofVanmarcke’smodel,inthesensethattheunderlyingassumptionsarebroadlysimilar.

Giventhepracticalsigni canceofbimodalprocessesandthescarcityofrelatedstudiesontheextremevalueproblem,thispaperaimstodevelopasimpleanalyticalmethodthatcanaccuratelypredictthebimodalextremes.Grantedthatthisisnotaneasytask,andnotingtheabundanceofliteratureonnarrowbandGaussianprocesses,itmakessensetoextendanexistingnarrowbandtechniquetothebimodalsituation.Inthisrespect,Langley’smethod[4]seemstobeanidealcandidateonaccountofitssimplicityandaccuracy.ItisenvisagedthatabimodalmethodbasedonanextensionofLangley’smethodwouldbemoreaccurateforawiderrangeofspectralshapesthantheT–Cformulation,whichisconstrainedbytheassumptionsinherentinVanmarcke’smodel.2.Backgroundtheoryandnarrowbandprocesses2.1.Extremevalueproblem

Considerazero-meanstationaryGaussianprocessX(t)withaone-sidedspectrumSXX(o).Theithspectralmo …… 此处隐藏:43502字,全部文档内容请下载后查看。喜欢就下载吧 ……

混合高斯分布的极值分析.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219