混合高斯分布的极值分析
时间:2025-04-20
时间:2025-04-20
Extreme value analysis of a stochastic process features in many engineering problems.The widely used Poisson approximation can be excessively conservative if a process hasnarrowband traits, as upcrossings tend to manifest in clumps. Over the years, variousauthors have developed techniques for predicting the extremes of narrowbandGaussian processes. A bimodal process,
JournalofSoundandVibration330(2011)3458–3472
ContentslistsavailableatScienceDirect
JournalofSoundandVibration
journalhomepage:http:///locate/jsvi
ExtremevalueanalysisofbimodalGaussianprocesses
Y.M.Lown
SchoolofCivil&EnvironmentalEngineering,NanyangTechnologicalUniversity,BlockN1,NanyangAvenue,Singapore639798,Singapore
articleinfo
Articlehistory:
Received23July2010Receivedinrevisedform27January2011
Accepted29January2011HandlingEditor:L.G.Tham
Availableonline25February2011
abstract
Extremevalueanalysisofastochasticprocessfeaturesinmanyengineeringproblems.ThewidelyusedPoissonapproximationcanbeexcessivelyconservativeifaprocesshasnarrowbandtraits,asupcrossingstendtomanifestinclumps.Overtheyears,variousauthorshavedevelopedtechniquesforpredictingtheextremesofnarrowbandGaussianprocesses.Abimodalprocess,comprisingtwonarrowbandcomponents,isoftenencounteredinpractice,butrelatedstudiesarescarce.Thispaperoutlinesasemi-analyticalapproachforextendinganygivennarrowbandmethodtobimodalprocesses.Themethodissimpletouse,anditssolutionalwaysspecializestotherespectivenarrowbandresultifeithercomponentbecomesin nitesimal.Numericalsimulationsareconductedforveri cation.Theproposedbimodalapproachisfoundtobeingoodagreementwithsimulationresults,providedthattheindividualcomponentextremeshavebeenaccuratelyevaluatedusingasuitabletechnique.
&2011ElsevierLtd.Allrightsreserved.
1.Introduction
Akeyissueinthe eldofrandomvibrationistheextremevalueproblem,whichisconcernedwiththeprobabilitythatarandomstructuralresponsewillexceedaparticularthresholdwithinaprescribedtimeinterval.Anintimatelyrelatedproblem,whichisnotexplicitlyaddressedherein,isthe rstpassageproblemthatinvolvestheprobabilitydistributionofthetimetofailure.Suchisthedif cultyoftheextremevalueproblemthatthereexistsnoexactsolution,evenforthespecialcaseofastationaryGaussianprocess.Consequently,numerousapproximatetechniques(e.g.[1–5])havebeendeveloped,asurveyofwhichcanbefoundinRef.[4].
ThemostcommonapproximationistoassumethatthethresholdcrossingsareindependentandcanbemodeledasaPoissonprocess.ThePoissonapproximationhasseveraladvantageousfeatures.Itissimple,alwaysconservative,anditasymptotestowardstheexactresultasthethresholdgoestoin nity.TheconservatismofthePoissonapproximationismostseverewhentheprocessisnarrowband.Forpracticallevelsofinterest,theassumptionofindependentcrossingsisunsatisfactoryforanarrowbandprocessowingtothetendencyofcrossingstomanifestinclumps.Thatistosay,onceanupcrossingforaparticularlevelhasoccurred,thereisaninordinatelikelihoodthatmoreupcrossingswillfollowshortly.
Inaseminalpaper,Vanmarcke[1]proposedanimprovementtothePoissonapproximation,basedonacascadeofassumptions.Vanmarcke’sapproximationcanbeexpressedinanexplicitform,andhasbeenshowntobereasonablyaccurateforcertainapplications.Theformulationreliessolelyonasinglebandwidthparametertocharacterizetheautocorrelationoftheprocess.Thisisadrawback,asithasbeendemonstrated[3,4]thatprocesseswiththesamebandwidthparameter,butofdifferingspectralshapes,http://ngley[4]developedanapproach
n
Tel.:+6567905265;fax:+6567910676.E-mailaddress:ymlow@ntu.edu.sg
0022-460X/$-seefrontmatter&2011ElsevierLtd.Allrightsreserved.doi:10.1016/j.jsv.2011.01.033
Extreme value analysis of a stochastic process features in many engineering problems.The widely used Poisson approximation can be excessively conservative if a process hasnarrowband traits, as upcrossings tend to manifest in clumps. Over the years, variousauthors have developed techniques for predicting the extremes of narrowbandGaussian processes. A bimodal process,
Y.M.Low/JournalofSoundandVibration330(2011)3458–34723459
thatovercomesthislimitationbyexploitingmoreoftheinformationsuppliedbytheautocorrelationfunction.Moreimportantly,themethodisstraightforwardtoapply.
Inpractice,thespectraldensityofaGaussianresponsemayexhibittwodistinctmodes,whereeachmodeisanarrowbandGaussianprocess.Onewouldexpecttheclumpingofupcrossingstobealsopresentinabimodalprocess,albeitonamoresophisticatedlevel.Abimodalresponsemayarisefromavarietyofphysicalmechanisms.Itmaybetheconsequenceofapeakintheresonantmode,andanotherpeakatthefrequencyoftheappliedforces.Anotherexampleisatwo-degree-of-freedomsystemsubjectedtowhitenoiseexcitation.Theloadingitselfcouldbebimodal;offshorestructuresoccasionallyencounterwaveswithbimodalspectra.Theimportanceofbimodalprocessesisevidencedbythenumerousstudiesonthespectralfatigueanalysisofbimodalprocesses(e.g.[6,7]).Conversely,forthebimodalextremes,onemay ndonlyonepriorinvestigationbyToroandCornell[8].ToroandCornell’s(T–C)methodisageneralizationofVanmarcke’smodel,inthesensethattheunderlyingassumptionsarebroadlysimilar.
Giventhepracticalsigni canceofbimodalprocessesandthescarcityofrelatedstudiesontheextremevalueproblem,thispaperaimstodevelopasimpleanalyticalmethodthatcanaccuratelypredictthebimodalextremes.Grantedthatthisisnotaneasytask,andnotingtheabundanceofliteratureonnarrowbandGaussianprocesses,itmakessensetoextendanexistingnarrowbandtechniquetothebimodalsituation.Inthisrespect,Langley’smethod[4]seemstobeanidealcandidateonaccountofitssimplicityandaccuracy.ItisenvisagedthatabimodalmethodbasedonanextensionofLangley’smethodwouldbemoreaccurateforawiderrangeofspectralshapesthantheT–Cformulation,whichisconstrainedbytheassumptionsinherentinVanmarcke’smodel.2.Backgroundtheoryandnarrowbandprocesses2.1.Extremevalueproblem
Considerazero-meanstationaryGaussianprocessX(t)withaone-sidedspectrumSXX(o).Theithspectralmo …… 此处隐藏:43502字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:复德育工作计划件