Prediction of welding distortion and residual stress in a th
发布时间:2024-11-06
发布时间:2024-11-06
国外关于焊接变形和参与应力分析的研究文献
Available online at http://
ComputationalMaterialsScience43(2008)
353–365
http:///locate/commatsci
Predictionofweldingdistortionandresidualstressina
thinplatebutt-weldedjoint
DeanDenga,*,HidekazuMurakawab
a
ResearchCenterofComputationalMechanicsInc.,TogoshiNI-BLDG7-1,Togoshi,Shinagawa-ku,Tokyo142-0041,Japan
b
JoiningandWeldingResearchInstitute,OsakaUniversity,11-1,Mihogaoka,Ibaraki,Osaka567-0047,Japan
Received1October2007;receivedinrevisedform22November2007;accepted4December2007
Availableonline29January2008
Abstract
Inautomotiveindustry,thinplatepartsarecommonlyused.Duringassemblingprocess,weldingtechnologyisusuallyemployedbecauseofhighproductivity.Weldingdistortionoftenoccursinthinplateweldedstructuresduetorelativelylowsti ness.Thedistortioncausesproblemsnotonlyintheassemblingprocessbutalsointhe nalproductquality.Therefore,predictionandreductionofweldingdeformationhavebecomeofcriticalimportance.Inthisstudy,three-dimensional,thermo-elastic–plastic,largedeformation niteele-mentmethod(FEM)isusedtosimulateweldingdistortioninalowcarbonsteelbutt-weldedjointwith1mmthickness.Tocomparewiththelargedeformationtheory,thesmalldeformationtheoryisalsousedtosimulatetheweldingdeformationandweldingresidualsstress.Meanwhile,thecharacteristicsofweldingtemperature eld,plasticstraindistributionandweldingresidualstressinthinweldedplatesarealsoexaminednumerically.Experimentsarealsocarriedouttomeasuretheweldingdistortioninthethinplatebutt-weldedjoint.Bycomparingthesimulationresultswiththemeasurements,itisfoundthattheresultspredictedbythethermo-elastic–plastic,largedeformationFEMmatchtheexperimentalvalueswell.Moreover,usingtheinherentstrainsobtainedbythethermo-elastic–plasticFEM,http://paringtheresultssimulatedbytheelasticFEMwiththosepredictedbythethermo-elastic–plasticFEM,itisveri edthattheinherentstrainmethodcane ectivelypredicttheweldingdeformationinthethinplatebutt-weldedjointwith1mmthickness.Ó2007ElsevierB.V.Allrightsreserved.
PACS:07.05.Tp;47.11.Fg;65.40.De;81.20.Vj
Keywords:Weldingdistortion;Numericalsimulation;Thinplate;Plasticstrain;Finiteelement;Inherentstrain;Nonlinearanalysis
1.Introduction
Distortioninaweldedstructureistheresultofthenon-uniformexpansionandcontractionoftheweldandsur-roundingbasematerial,causedbytheheatingandcoolingcycleduringweldingprocess.Weldingdistortionhasnega-tivee ectsontheaccuracyofassembly,externalappear-ance,andvariousstrengthsoftheweldedstructures.Inmanycases,additionalcostsandscheduledelaysareincurredfromstraighteningweldingdistortion.Onthe
*
Correspondingauthor.Tel.:+81337853033;fax:+81337856066.E-mailaddress:deng@rccm.co.jp(D.Deng).
otherhand,increasingly,thedesignofengineeringcompo-nentsandstructuresreliesontheachievementofsmalltol-erance.Forthesereasons,predictionandcontrolofweldingdeformationhavebecomeofcriticalimportance.Inthepastdecades,alotofexperimentsandnumericalanalyseshavebeenconductedforpredictingweldingdis-tortion,andalotoffundamentalknowledgehasbeenalsoestablished[1–7].However,thereisverylimitedliteraturedescribingthepredictionandmeasurementofweldingdeformationinthethinplateweldedstructuresespeciallyfortheseweldedstructurewhoseplateorwallthicknessislessthan3.0mm.Recently,Liangetal.[8–10]haveestablishedanumberofdatabasesofweldinginherentdeformationsfortypicalthinplateweldedjointusing
0927-0256/$-seefrontmatterÓ2007ElsevierB.V.Allrightsreserved.doi:10.1016/http://matsci.2007.12.006
国外关于焊接变形和参与应力分析的研究文献
354D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365
experimentalmethodandinverseanalysismethod,andsomemeaningfulachievementshavebeenobtained.
Inautomotiveindustrythethinplatepartsarecom-monlyemployed,andalotofthinplatepartsareassembledbyarcweldingprocessbecauseofhighproductivity.Duetorelativelysmallsti ness,signi cantweldingdistortionoftenoccurs.Tocomprehensivelyunderstandthecharacteristicsofweldingdeformationinthinplateweldedstructure,itisnecessarytodofurtherfundamentalresearchesbymeansofbothexperimentandnumericalsimulation.
Inthisstudy,three-dimensional,thermo-elastic–plastic,largedeformation niteelementmethod(FEM)isemployedtosimulateweldingdistortionandweldingresid-ualstressinalowcarbonsteelbutt-weldedjointwith1mmthickness.Tocomparewiththelargedeformationtheory,thesmalldeformationtheoryisalsousedtosimulatetheweldingdeformationandweldingresidualsstress.Mean-while,thecharacteristicsofweldingtemperature eld,plas-ticstraindistributionandweldingresidualstressinthinweldedplatesarealsoexaminednumerically.Experimentsarealsocarriedouttoverifythenumericalsimulationmethod.Moreover,usingtheinherentstrains(plasticstrains)computedbythethermo-elastic–plasticFEM,anelasticFEM,inwhichthelargedeformationistakenintoaccount,isalsoutilizedtoestimatetheweldingdeforma-tioninthesamebutt-weldedjoint.2.Experimentalprocedure
Inthisstudy,asimpleexperimentiscarriedouttomea-sureweldingdeformationinthethinplatebutt-weldedjoint.Thebutt-weldedjointconsistsoftwothinmildsteelsheets.Thedimensionofeachsheetis100mmÂ100mmÂ1mm.Theweldingmethodisgasmetalarcwelding(GMAW).Theshieldinggaswas80%Ar+20%CO2.TheweldingwireisYGW16[11].ThedetailedweldingconditionsareshowninTable1.
Toimitatetheweldingconditionsusedinautomobileindustry,aninitialgapbetweenthetwoplatesissettobe0.4mmandapartiallyweldingisperformedinthejoint.Thelengthofweldinglineisabout60mm.Thespecimensareweldedwithoutexternalconstraints.Intheexperi-ments,threeidenticalbuttjointsareperformed.Fig.1showsthepictureofacompletedjoint.
Afterwelding,thede ectionatthecenteroftheweldinglineismeasuredusingasimplemethodasshowninFig.2.Intheexperiments,aVerniercaliperisusedtomeasurethevaluesofh0andh1.Inthis gure,wisthedi erencebetweenh0andh1.Themeasuredvalues(w)ofthesethreejointsare2.20mm,1.90mmand2.10mm.Approximately,
Table1
WeldingconditionsParameterValue
Current(A)65.0
Voltage(V)17.0
Weldingspeed(mm/min)780.0
Fig.1.Thinplatebutt-weldedjoint.
w/2canberegardasthede ectionatthecenteroftheweld-ingline.Theaveragevalue(w)ofthesethreebuttjointsis2.067mm.Thismeanstheaveragevalueofthede ection(w/2)attheweldinglineis1.03mm.
3.Predictionoftemperature eld,residualstressanddeformationusingthermo-elastic–plasticFEM
Inthissection,basedonABAQUScode[12]asequentiallycoupledthermo-elastic–plastic niteelementcomputationalprocedureisdevelopedtocalculatetemperature eld,weldingresidualstressandweldingdeformations.The3D niteele-mentanalysesareperformedtonumericallystudytheweldingdistortionandweldingresidualstressinbutt-weldedthinplates.Inordertocapturethenonlineargeometricalbehaviorsinathinplatestructure,thelargedeformationtheoryisincor-poratedintothermo-elastic–plasticFEM.
Fig.3showsthe niteelementmeshmodelusedinthesimulation.Thedimensionsofthe niteelementmodel
Shieldinggas owrate(L/min)15.0
Tip-to-workdistance(mm)25.0
Wirediameter(mm)0.9
Travelangle(°)45.0
国外关于焊接变形和参与应力分析的研究文献
D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365355
Fig.3.Finiteelementmodel,gapandbeadshape.
arethesameasthoseoftheexperimentalspecimen.Ele-mentmeshesaredenserinthevicinityoftheweldcenter-line,whilethemeshesbecomegraduallycoarseraway
fromtheweldzone.Thelengthofeachelementintheweld-ingdirectionis2.5mm.Thenumberofdivisioninthethicknessdirectionisfour.Thetotalnumberof8-nodebrickelementis4000.
Inthepresentstudy,toconsiderthebeadshapeintheFEmodel,threedimensionsoftheweldbeadobtainedintheexperimentsaremeasured.Oneistheheightofweldreinforcement;andtheothertwoarethebreadthsbetweenthetwotoesontheuppersurfaceandthebottomsurface,respectively.IntheFEmodel,thebeadshapeisroughlydeterminedbasedonthesethreeparameters.ThebeadshapeisshowninFig.3.
Inthethermalanalysis,theweldingconditionsareassumedtobethesameasthoseusedintheexperiment.3.1.Heatsourceandthermalanalysis
Weldingheattransferanalysiswithgivenweldingcondi-tionsisperformedinthe3Dthinplatemodel.Inthisstep,temperaturehistoriesateachelementnodesarecomputedduringtheweldingprocess.3D,8-nodes,linearbrickandheatelements(DC3D8)[12]areselectedforthethermalanalysis.TemperaturedependentphysicalpropertiesofthemildcarbonsteelasshowninFig.4[13]areemployedinheattransferanalysis.Inthisstudy,solid-statephasetransformationisneglectedbecausethein uenceofphasetransformationontheweldingdeformationandweldingresidualstressisinsigni cantinthelowercarbonsteel[14].Duringthewelding,thegoverningequationfortransientheattransferanalysisisgivenby:qc
oT
ot
ðx;y;z;tÞ¼ÀrÁqðx;y;z;tÞþQðx;y;z;tÞð1Þ
whereqisthedensityofthematerials[g/mm3],cisthespe-ci cheatcapacity[J/(g°C)],Tisthecurrenttemperature[°C],qistheheat uxvector[W/mm2],Qistheinternalheatgenerationrate[W/mm3],x,yandzarethecoordi-natesinthereferencesystem[mm],tisthetime[s],and$isthespatialgradientoperator.
Thenon-linearisotropicFourierheat uxconstitutiveequationisemployed:q¼ÀkrT
ð2Þ
wherekisthetemperature-dependentthermalconductivity[J/(mms°C)].
Inthisstudy,theheatfromthemovingweldingarcisappliedasavolumetricheatsourcewithadoubleellipsoi-daldistributionproposedbyGoldak[15],whichisexpressedbythefollowingequations:Forthefrontheatsource:
Qðx0;y0;z0;tÞ¼6p 3 ffQwÀ3x02=a2À3y02=b2À3z02=caee2
1eð3Þ
1bcppFortherearheatsource:
Qðx0;y0;z0;tÞ¼
6p 3 frQwÀ3x02=a2À3y02=b2a2bcpp
eeÀ3z02=c2
2eð4Þ
wherex0,y0andz0arethelocalcoordinatesofthedoubleellipsoidmodelalignedwiththeweldedpipe;ffandfrareparameterswhichgivethefractionoftheheatdepositedinthefrontandtherearparts,respectively.Becausethetemperaturegradientinthefrontleadingpartissteeperthaninthetailingedge,ffandfrareassumedtobe1.33and0.67,respectively.Qwisthepoweroftheweldingheatsource.Itcanbecalculatedaccordingtotheweldingcur-rent,thearcvoltageandthearce ciency.Thearce -ciencyg,isassumedtobe80%fortheGMAWweldingprocess.Theparametersa1,a2,bandcarerelatedtothecharacteristicsoftheweldingheatsource.The
parameters
国外关于焊接变形和参与应力分析的研究文献
356
D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365
Table2
ParametersoftheheatsourceParameterValue(mm)a12.0a24.0b1.2c
1.0
oftheheatsourcecanbeadjustedtocreateadesiredmeltedzoneaccordingtotheweldingconditions.Theval-uesoftheseparametersusedinthepresentsimulationaresummarizedinTable2.
WhenstructuralanalysisFEMcodessuchasABAQUSandMARCareusedtosimulatethetemperaturedistribu-tioninweldingprocess,the uid owandsolidi cationofmaterialintheweldpoolcannotbedirectlyconsideredbecausethecoupledproblembetweensolidandliquidisnotinvolvedinthesesoftwareatpresent.However,thee ectofthe uid owhassigni cante ectsonthetemper-aturedistributionandtheshapeofweldpool.Ifthee ectofthe uid owisneglected,thehighesttemperatureinweldpoolwillbeveryhigh.Accordingtotheauthor’sexperience,thepeaktemperatureinweldingpoolishigherthan3000°Cinsomecaseswhenthe uid owe ectisneglected.Thisphenomenonismuchdi erentfromtherealisticsituation.Okagaitoetal.[16]measuredthesur-facetemperaturedistributiononTIGweldpoolinSUS304steel.Theirresearchsuggeststhatthehighesttem-peratureonthemoltenpoolsurfaceisapproximately1750°C.Inthisstudy,toconsiderthe uid owanarti -ciallyincreasedthermalconductivityintheweldpoolisused.Thethermalconductivityisassumedtobetwiceaslargeasthevalueofroomtemperaturefortemperatureabovethemeltingpoint.
Thethermale ectsduetosolidi cationoftheweldpoolaremodeledbytakingintoaccountthelatentheatforfusion.Thevalueofthelatentheatis270J/g[17].Theliq-uidustemperatureTLandthesolidustemperatureTSareassumedtobe1500°Cand1450°C,respectively.
Heatlosses(qc)duetoconvectionareconsideredforallthesurfacesusingNewton’slaw:qc¼ÀhfðTsurÀT0Þ
ð5Þ
wherehfis lmcoe cientforconvection[W/(mm2°C)],Tsuristhesurfacetemperature[°C],andT0isambienttem-perature[°C].
Inthisstudy,atemperature-dependent lmcoe cient[18]isused,andtheambienttemperatureisassumedtobe20°C.
Radiationheatlosses(qr)areaccountedforallthesur-facesbyusingStefan–Boltzmanlaw:
qr¼ÀerðT4ÀT4
sur0Þ
ð6Þ
whereeisemissivity,risStefan–Boltzmanconstantforradiation.
Inthisstudy,theemissivityisassumedtobe0.2[19,20].
Theuser-de nedsubroutinestoABAQUScodeareuti-lizedintheheattransferanalysistomodelheat uxes,con-vectionandradiationboundaryconditions.3.2.Mechanicalanalysis
Thesame niteelementmodelsusedinthethermalanal-ysesareemployedinmechanicalanalyses,exceptfortheelementtypeandboundaryconditions.Therestraintcon-ditionsareshowninFig.3bythearrows.TheC3D8Iele-menttype[12]isusedtosimulatethestress–strain eld.Theanalysesareconductedusingthetemperaturehistorycalculatedbythethermalanalysesastheinputinformation.
Forthemildsteel,becausephasetransformationhasaninsigni cante ectontheweldingresidualstressandthedeformation,thetotalstraincanthereforebedecomposedintothreecomponentsasfollows:etotal¼eeþepþeth
ð7Þ
Thecomponentsontheright-handsideofEq.(7)corre-spondtoelastic,plasticandthermalstrain,respectively.
TheelasticstrainismodeledusingtheisotropicHooke’slawwithtemperature-dependentYoung’smodulusandPoisson’sratio.Fortheplasticstraincomponent,aplasticmodelisemployedwiththefollowingfeatures:theVonMisesyieldsurfaceandtemperature-dependentmaterialproperties.Fig.5showsthetemperaturedependentmechanicalproperties[13].Becausethee ectofworkhard-eningisnotsigni cantinmildsteel,itisneglectedinthisstudy.
Inthisstudy,thethicknessofthespecimenisonly1mm,soitcanbeexpectedthatthegeometricallynonlinearphe-nomenonprobablyoccurduringwelding.Toexaminethedi erencebetweenthenumericalresultscomputedbythe
国外关于焊接变形和参与应力分析的研究文献
D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365357
largedeformationtheoryandthatcalculatedbythesmalldeformationtheory,boththetwomethodsareusedtopre-dictweldingdistortionandweldingresidualstress.Thus,inthemechanicalanalysisstage,twosimulationcases(caseAandcaseB)areperformed.ThelargedeformationtheoryisconsideredincaseA,whilethesmalldeformationtheoryisusedincaseB.3.3.Simulationresults
3.3.1.Characteristicsofweldingtemperature eld
Fig.6showsthetemperaturehistoriesatthecenteroftheweldingline.Fromthis gure,itcanbeseenthatthepeaktemperatureatthetopsurfaceoftheweldpoolisabout1800°C.Inthesame gure,itcanalsobeobservedthatthedi erencebetweenthepeaktemperatureatthetopsurfaceandthatatthebottomsurfaceisnotsigni -cant.Thethermale ectsduetosolidi cationoftheweldpoolareconsideredintheFEmodel,sothesetwocoolingcurvesre ectthesolidi cationphenomenaoftheweldpool.Exceptforthepeaktemperature,thetemperaturehis-torycurvesofthetopsurfaceandthebottomsurfaceinthefusionzonehavenodi erence.Fig.7showsthetempera-turehistoriesofthetopsurfaceandthebottomsurfaceintheheat-a ectedzone(HAZ)ofthemid-section.Thedistancebetweenthispositionandtheweldcenterlineis3.2mm.This gureindicatesthatboththetopsurfaceandthebottomsurfaceintheHAZhavealmostthesamepeaktemperatureandtheidenticalcoolingrate.IntheFEmodel,theplatethicknessofthefusionzoneislessthan2mm,andtheplatethicknessisonly1mminotherparts.Itisthesmallplatethicknessthatresultedinaneventem-peraturedistributionthroughthicknessduringwelding.3.3.2.Weldingresidualstress
Inthemechanicsanalysis,boththelargedeformationtheoryandthesmalldeformationtheoryareusedtosimu-
lateweldingresidualstressanddeformationinthebutt-weldedjoint.Fig.8showsthelongitudinalresidualstressdistributionsofthemiddlesection,whicharecomputedbythelargedeformationtheory(caseA).Fig.9showsthelongitudinalstressdistributionsofthemiddlesection,whichpredictedbythesmalldeformationtheory(caseB).Duetoarelativelylargeout-of-deformationaregener-atedafterweldingincaseA,thereisadi erencebetweenthelongitudinalstressofthetopsurfaceandthatofthebottomsurface.Onthecontrary,thereisalmostnodi er-encebetweenthelongitudinalstressofthetopsurfaceandthatofthebottomsurfaceincaseB.
Fig.10showsthetransverseresidualstressdistributionsofthemiddlesectionpredictedbycaseA.Thereisalsoasigni cantdi erencebetweenthetransverseresidualstressofthetopsurfaceandthatofthebottomsurface.Itisvery
国外关于焊接变形和参与应力分析的研究文献
358D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365
clearthatinthefusionzoneandtheHAZthetransverseresidualstressofthetopsurfaceismuchlargerthanthatofthebottomsurface.Thedi erenceresultsfromthetrans-versebendingdeformation.Fig.11showsthetransverseresidualstressdistributionsofthemiddlesectioncomputedbyecaseB.This gureindicatesthatthereisalmostnodif-ferencebetweenthetopsurfaceandthebottomsurface.3.3.3.Weldingdeformation
Fig.12showsthecontoursofthede ectiondistributioncomputedbythelargedeformationtheory.Fromthis g-ure,itcanbeobservedthatalargelongitudinalbendingandatransversebendingareproducedafterwelding.Atthetwoendsofthegaps,themaximumde ectionisabout1.7mm.Fig.13showsthecontoursofthede ectiondistri-butionpredictedbythesmalldeformationtheory(caseB).
This gurealsore ectsthatbothlongitudinalbendingandtransversebendingaregeneratedinthebutt-weldedjoint.ThedeformationmodeissimilartocaseA,howeverthemagnitudesofde ectionaremuchsmallerthancaseA.Fig.14showsthede ectiondistributionsofcaseAandcaseBalongthemiddleline(lineAB),whichisde nedinFig.12.Inthis gure,pointAshowninFig.12isassumedtobetheorigin.Theexperimentalmeasurement(de ection)atthecenteroftheweldinglineisalsoplottedinthesame gure.Itisclearthatthede ectionatthecenteroftheweldinglinepredictedbycaseAismuchclosetotheexperimentalvalue.Fromthesame gure,itcanbealsoknownthattheexperimentalvalueissigni cantlylargerthanthenumericalresultcomputedbycaseB.Thisinfor-mationsuggeststhatwhenweldingdeformationofathinplateweldedjointorstructureissimulatednumericallyitisnecessarytoconsidergeometricallynonlinearphenome-non.Otherwise,http://paringthetransverseshrinkageofthetopsurfacewiththatofthebottomsurface,itcanbeobservedthattheformerissmallerthanthelatter.How-ever,thedi erenceisverysmall.Fig.16showstheY-direc-tionaldisplacementdistributionofthemiddlesectioncomputedbythesmalldeformationtheory.This http://paringFig.15withFig.16,itcanbeconcludethattheY-directionaldisplacementspredictedbycaseAareclosetothosecomputedbycaseBonthewhole.
3.3.4.Plasticstraindistribution
Fig.17showstheplasticstraindistributionsinthelon-gitudinaldirection(weldingdirection)ofthemiddlesec-tion.Theplasticstrainvaluesaretheaverageonesthroughthicknesspredictedbythelargedeformationthe-
国外关于焊接变形和参与应力分析的研究文献
D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365359
Fig.12.De ectiondistributionofCase
A.
Fig.13.De ectiondistributionofCaseB.
oryandthesmalldeformationtheory.Fromthis gure,itcanbeobservedthattheplasticstraindistributionspre-dictedbythetwocaseshavenosigni cantdi erence.Boththerangeofthelongitudinalplasticstrainvaluesandthedistributionshapesofthesetwocasesarefairlyclose.Fig.18showstheplasticstraindistributionsinthetrans-versedirectionofthemiddlesectioncomputedbyCaseAandCaseB.This gureindicatesthatthetransverseplasticstraindistributionsofthetwocasesarequitesimilar.
FromFigs.17and18,itisknownthattherangeofthelongitudinalplasticstraindistributionislargerthanthatofthetransverseplasticstraindistribution.ThetransverseplasticstrainrangeconcentratesalmostonlyinthefusionzoneandtheHAZ,whilethelongitudinalplasticstrainrangedistributesinarelativelylargerange.Generally,therangeandmagnitudeoftheplasticstraincomponentaremainlygovernedbythepeaktemperatureandtherestraintconditions[21].Duringwelding,becausetherestraintintensityinthelongitudinaldirection(weldingdirection)islargerthanthatinthetransversedirection,therangeofthelongitudinalplasticstrainisrelatively
large.
国外关于焊接变形和参与应力分析的研究文献
360D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365
3.3.5.Discussions
Basedonthesimulationresults,itisknownthatboththelongitudinalplasticstrainandthetransverseplasticstraindistributenarrowlyinthefusionzoneanditsvicin-ity.Formildsteel,theplasticstrainsaremainlygovernedbythethermo-mechanicalbehavioroftheweldmetalandthebasemetalnearthefusionzoneduringwelding,sothemagnitudesanddistributionspredictedbythelargedeformationtheoryandthesmalldeformationtheoryarefairlysimilar.Onthecontrary,the naldeformationofthethinplatebutt-weldedjointshowsasigni cantlyglobalcharacteristic.Itisveryclearthateventhoughthelargedeformationtheoryandthesmalldeformationtheorypre-dictsimilarplasticstrainsinthebutt-weldedjoint,how-ever,the nalweldingdeformationsespeciallytheout-of-
deformation(de ection)aresigni cantdi erent.Therea-sonisthatbeyondtheplasticstrainzonetheweldingdefor-mationismainlygovernedbytheelasticstrainandthestrain–displacementrelationship.Bycomparingwiththeexperiment,itisclearthatthede ectionatthecenteroftheweldinglinepredictedbythelargedeformationtheoryisveryclosetotheexperimentalmeasurement.Theresultsimulatedbythesmalldeformationtheoryismuchsmallerthanthemeasurement.Thisindicatesthatwhenthethermo-elastic–plasticFEMisusedtopredicttheweldingdeformationinathinplatestructurethegeometricallynon-linearphenomenonshouldbecarefullyconsidered.Itisveryinterestingtonotethateventhoughthemagnitudesoftheweldingdeformationpredictedbythetwotheoriesaremuchdi erent,however,thedeformationmodesaresimilar.BothFigs.12and13showthatthede ectiondis-
国外关于焊接变形和参与应力分析的研究文献
D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365361
tributionofthebutt-weldedjointhasasaddle-shapedmode,whichisgenerallyoppositetothatofafullweldingbutt-weldedjoint[13].Becauseapartiallyweldingisper-formedinthebuttjoint,thegapsremainedatthetwoendscausedthesaddle-shapedmodeafterwelding.
Becauserelativelylargelongitudinalbendingandtrans-versebendingispredictedbythelargedeformationtheory,boththelongitudinalstressandthetransversestressofcaseAhavesigni cantgradientdistributionsthroughthickness.Onthecontrary,asmallout-of-deformationissimulatedbythesmalldeformationtheory,soeitherthelongitudinalstressorthetransversestressofcaseBhasalmostnogra-dientthroughthicknessinthebutt-weldedjoint.4.Predictionofweldingdeformationusinginherentstrainmethod
4.1.Inherentstrain
Althoughthethermo-elastic–plasticFEMcanbeusedtosimulateweldingtemperature eld,weldingresidualstressandweldingdeformation,averylongcomputationaltimeisneededbecausetheweldingmechanicalbehaviorishighlynonlinearproblemincludingmaterialnonlinearity,geometricalnonlinearityandsometimescontactnonlinear-ity.Besidesthethermo-elastic–plasticFEM,elasticFEMbasedoninherentstraintheory[21–26]http://paringwiththethermo-elastic–plasticFEM,onlyaveryshortcomputa-tionaltimeisneededtocompletethesimulationevenforalargeandcomplexstructure.Moreover,onlytheelasticmodulusandthePossion’sratioatroomtemperatureareusedintheelasticFEM,andthetemperaturedependentmaterialpropertiesarenotneeded.Inthisstudy,theinher-entstrainmethodisemployedtosimulatetheweldingdeformationinthethinplatebutt-weldedjoint.
Basedonexperimentalobservationsandtheoreticalanalysis,itisfoundthatthetotalweldingdistortionofaweldjointismainlyproducedbyfourcomponents,namelylongitudinalshrinkage(dx),transverseshrinkage(dy),lon-gitudinalbending(hx)andtransversebending(angulardis-tortionhy).Thefourfundamentaldeformationcomponentsarealsocalledinherentdeformations[10].Accordingtothenumericalresultsobtainedbythethermo-elastic–plasticFEM,thefourinherentdeformationcomponentsinacross-sectionofthebutt-weldedjointcanbecalculatedusingthefollowingequations[8–11]:
d1
Zx¼epdydzð8ÞdZx1y¼hep
ydydzð9Þh12
Zx¼h3epxðzÀh=2Þdydzð10Þh12
Zy¼h3epyðzÀh=2Þdydzð11Þwhereepxistheplasticstrainintheweldingdirection(lon-gitudinaldirection);epdirection;histhethicknessyistheplasticstraininthetransverseoftheplate,andzisthecoor-dinateinthethicknessdirection.
Thesourceinducedweldingdeformationandweldingresidualstressiscalledinherentstrain[22].Whentheinher-entdeformationsofaweldjointareknown,theycanbetransferredintothecorrespondinginherentstraincompo-nents[26].WhentheinherentstrainsareintroducedintoanelasticFEM,itisusuallyassumedthateachcomponenthasauniformdistributionalongtheweldingline.Therefore,theaveragevaluesofaweldjointareoftenusedtoapprox-imatelyrepresenttheinherentstrainsforthewholejoint.Theaveragevaluesofthefourinherentdeformationsinthebutt-weldedjointcanbecalculatedusingthefollowingformulae:
d1ZLx¼Ldxdxð12Þw d1Z0
Ly¼Ldydxð13Þw h1Z0
Lx¼Lhxdxð14Þw0
h1ZLy¼Lhydxð15Þw0whereLwisthelengthoftheweldingline,Listhelengthofthespecimen.
4.2.Elastic niteelementbasedoninherentstrain
IntheelasticFEM,the4-nodeplateisused.Forthinplatedeformation,de ectionw(x,y)isassumedtobeequaltothede ectionofmid-plane,w0(x,y).Whenlargedeformation(geometricallynonlinearphenomenon)iscon-
国外关于焊接变形和参与应力分析的研究文献
362D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365
sidered,thestrain–displacementrelationscanbede nedasfollows:
"eibou01 ow 2# o2w x¼exþex¼oxþ00
2oxþÀzox2ð16Þ"e¼eiov01 o 2# 2 yyþeby¼oyþw02oyþÀzow0
oy2ð17Þc¼ci ou0ov0ow0ow0 o2w0
xyxyþcbxy¼oyþoxþoxoyþÀ2zoxoyð18Þwhereu0,v0andw0arethedisplacementatmid-plane,ex,ey
andcxyaretotalstrains,andei;ex;eiyandcixyarein-plane
strains,andebThecurvaturexbyandcb
(jxybendingstrains.
x)inaplaneparalleltothex–zplaneandthecurvature(jy)inaplaneparalleltothey–zplaneandthetwistingcurvature(jxy),whichrepresentsthewarpingofthex–yplane,canbede nedasfollows:o2jw0
x¼Àox2
ð19Þj¼Ào2w0
yoy2
ð20Þ
jÀ
o2w0
xy¼oxoy
ð21Þ
Fig.19showsschematicallyabutt-weldedjoint,theaveragelongitudinalshrinkage(d joint.Inthis
x)canbetrans-formedintothein-planestraincomponent(eÃdinaldirection;theaveragetransverseshrinkagex)inlongitu-(d y)canbechangedintothein-planestraincomponentðeÃtransversedirection;theaverageangulardistortionyÞðh
in
yÞcanbeconvertedintothecurvatureðjÃandtheaveragelongitudinalbendingyÞðh alongthey-axis;
xÞcanbetrans-formedintothecurvatureðjÃxÞalongthex-axis.TheseinherentstraincomponentsareintroducedintotheelasticFEMasinitialstrains,andthetotalweldingdistortioncanbeestimatedthroughelastic niteelementanalysispro-cedure[26]asshowninFig.20.
InFig.19,{e*},{e},{ee},{f},{u}and{r}arevectorsofinherentstrain,totalstrain,elasticstrain,equivalentnodalload,nodaldisplacement,andresidualstress,and[B],[D],and[K]arestrain–displacementmatrix,elasticstress–strainmatrixandsti nessmatrix,respectively.
4.3.Elastic niteelementmodel
Theelastic niteelementmodel,theareaintroduced
inherentstrains,andtheinitialgapsareshowninFig.21.Accordingtothesimulationresultscomputedbythethermoelastic–plasticFEMtherangeofthe
longitudinal
Fig.21.TheFEmodel,theareaintroducedinherentstrainsandtheinitialgap.
国外关于焊接变形和参与应力分析的研究文献
D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365363
plasticstrainislargethanthatofthetransverseplasticstrain.Intheelasticanalysis,itisassumedthatallthefourinherentstraincomponentsareintroducedintothesamearea.Thefouraverageinherentstraincomponentsaredeterminedbythefollowingequations:
eÃx¼dx=Bis
dy=Biseü
y
ð22Þð23Þð24Þð25Þ
hÃx¼hx=Bis
hÃy¼hy=Bis
whereBisisthebreadthoftheelementsinwhichtheinher-entstrainsareintroduced.
4.4.Simulationresultsanddiscussions
Fig.22showsthecontourof nalde ectiondistribu-tion.BycomparingwithFig.11,itcanbeconcludedthatthede ectiondistributionpredictedbytheelasticFEMmatchesthatcomputedbythethermo-elastic–plasticFEMwell.Fig.23showsthede ectiondistributionalongthelineABasde nedinFig.20.Thecorrespondingde ec-tiondistributionpredictedbythethermo-elastic–plasticisalsoplottedinthesame gure.Itisclearthatthedi erencebetweenthetwocurvesisverysmall.
Fig.24showstheY-directionaldisplacementdistribu-tionsalonglineABpredictedbytheelasticFEMandthethermo-elastic–plasticFEM.Theaveragevaluesofthetopsurfaceandthebottomsurfacesimulatedbythethermo-elastic–plasticFEMareplottedinthis gure.This guremeansthatthetwodistributedcurvesarequitesim-ilar.Throughcarefullyobservation,itcanbefoundthat
thetransverseshrinkagepredictedbythethermo-elastic–plasticFEMisslightlylargerthanthatestimatedbytheelasticFEM.IntheelasticFEmodel,theaveragetrans-verseinherentstrainofthewholejointisused.Inthethermo-elastic–plasticFEmodel,thetransverseshrinkageshavenon-uniformdistributionalongtheweldinglineandthemaximumvalueisatthecomparedlocation(lineAB).Thesetwofactorsaremainreasonswhichresultedinaslightlydi erencebetweenthetwocurvesshowninFig.24.
WhentheelasticFEMisusedtopredictweldingdefor-mation,theattentionismainlypaidtothetotal
deforma-
Fig.22.De ectiondistributionpredictedbyelasticFEM.
国外关于焊接变形和参与应力分析的研究文献
364D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365
tionratherthanthelocaldeformation.Fromthisview-point,itcanbeconcludedthatthetransverseshrinkagepredictedbythelargedeformationelasticFEMmatchesthatcomputedbythethermo-elastic–plasticFEMwellonthewhole.
FromFigs.12,22,23and24,itcanbeconcludedthattheelasticFEmodelhasaccuratelyreproducedtheweldingdeformation,whichissimulatedbythethermo-elastic–plasticFEmodel.Basedonthepresentstudy,itcanbeinferredthatwhentheinherentstrainsofeachjointinvolvedinathinplatestructureareknown,theproposedelasticFEMcane http://paringthecomputationaltime,itisfoundthatthecomputationaltimetocompletetheelasticFEanalysisisfarshorterthanthatusedbythethermo-elastic–plasticFEanalysis.Inthepresentstudy,thetotalcomputationaltimeofboththethermalanalysisandthethermo-mechan-icalanalysisisapproximately12hoursforthethermo-elas-tic–plasticFEmodel,whereasthecomputationaltimeoftheelasticFEmodelisshorterthan1min.Ontheaspectofcomputationaltime,theelasticFEMhasasigni cantadvantageoverthethermo-elastic–plasticFEM.Thus,thismethodisapromisingalternativetopredictweldingdefor-mationforpracticallargethin-plateweldedstructures.
5.Conclusions
Inthisstudy,thethermo-elastic–plasticFEMisusedtosimulatetheweldingtemperature eld,residualstressanddistortioninathinplatebuttjoint.Meanwhile,experi-mentsarecarriedouttomeasuretheweldingdeformation.Moreover,theelasticFEMbasedoninherentstraintheoryisalsoutilizedtosimulateweldingdeformationinthesamebuttjoint.Accordingtothenumericalandexperimentalresults,thefollowingconclusionscanbedrawn.
(1)Basedonthesimulationresults,itisknownthatthere
almostisnotemperaturegradientthroughthicknessinthethinplatebuttjointduringwelding.
(2)Althoughthelargedeformationtheoryandthesmall
deformationtheorypredictthesimilarplasticstrains,however,the nalweldingdeformationsespeciallytheout-of-deformationcomputedbythetwometh-odsaremuchdi erent.Bycomparingwithexperi-ment,itisclearthatthenumericalresultcalculatedbythethermo-elastic–plastic,largedeformationFEMisinagoodagreementwiththemeasurement.Therefore,topreciselypredictweldingdeformationinathinplatestructure,itisnecessarytoconsiderthegeometricallynonlinearproblem.
(3)Becauseofrelativelylargelongitudinalbendingand
transversebendingdeformations,boththelongitudi-nalandthetransverseresidualstressespredictedbythethermo-elastic–plastic,largedeformationFEMhaveagradientthroughthickness.
(4)TheelasticFEMwithconsideringlargedeformation
canbeusedtopredictpreciselyweldingdeformationinthethinplatebuttjoint.Moreover,thecomputa-tionaltimeismuchshorterthanthatusedinthethermo-elastic–plasticFEM.Fortheautomotiveindustryapplication,theelasticFEMbasedontheinherentstraintheoryisapromisingmethodtopre-dictweldingdeformation.
References
[1]G.Verhaeghe,PredictiveFormulateForWeldDistortion–ACriticalReview,AbingtoPublishing,2000.
[2]D.Radaj,WeldingResidualStressandDistortionCalculationandMeasurement,WoodheadPublishingLtd.,DVSVerlag,2003.
[3]D.Deng,H.Murakawa,Y.Ueda,InternationalJournalofO shoreandPolarEngineering14(2)(2004)138–144.
[4]G.HJung,C.L.Tsai,WeldingJournal83(6)(2004)177s–187s.
[5]ZhiLiFeng,ProcessesandMechanismsofWeldingResidualStressandDistortion,WoodheadPublishingLtd.,Cambridge,UK,2005.[6]L.-E.Lindgren,ComputerMethodsinAppliedMechanicsandEngineering195(48–49)(2006)6710–6736.
[7]D.Deng,W.Liang,H.Murakawa,JournalofMaterialsProcessingTechnology183(2-3)(2007)219–225.
[8]W.Liang,S.Sone,M.Tejima,H.Serizawa,H.Murakawa,TransactionsofJWRI33(2004)45–51.
[9]W.Liang,D.Deng,H.Murakawa,TransactionsofJWRI34(1)(2005)113–123.
[10]W.Liang,D.Deng,S.Sone,H.Murakawa,WeldingintheWorld49
(11/12)(2005)30–39.
[11]R.Suzuki,T.Nakano,KobeSteelEngineeringReports52(3)(2002)
74–78.
[12]ABAQUS/Standard,vols.1,2and3,Version6.4,Hibbitt,Karlsson
&SorensenInc.,2003.
[13]D.Deng,Theoreticalpredictionofweldingdistortioninthincurved
structureduringassemblyconsideringgapandmisalignment,Doc-toralThesis,OsakaUniversity,2002.
[14]D.Deng,Y.Luo,H.Serizawa,M.Shibahara,H.Murakawa,
TransactionsofJWRI32(2)(2003)325–333.
[15]J.Goldak,A.Chakravarti,M.Bibby,MetallurgicalTransactionsB
15(1984)299–305.
国外关于焊接变形和参与应力分析的研究文献
D.Deng,H.Murakawa/ComputationalMaterialsScience43(2008)353–365
[16]T.Okagaito,T.Ohji,F.Miyasaka,QuarterlyJournalofJapan
WeldingSociety22(1)(2004)21–26.
[17]W.Zhang,J.W.Elmer,T.DebRoy,MaterialsScienceandEngineer-ingA333(2002)320–325.
[18]P.Michaleris,A.DeBiccar,WeldingJournal76(4)(1997)72s–180s.[19]S.B.Brown,H.Song,JournalofEngineeringforIndustry114(1992)
441–451.
[20]B.Taljat,B.Radhakrishnan,T.Zacharia,MaterialScienceand
EngineeringA246(1998)45–54.
[21]H.Murakawa,Y.Luo,Y.Ueda,JournaloftheSocietyofNaval
ArchitectsofJapan180(1996)739–751.
365
[22]Y.Ueda,M.GYuan,JournalofEngineeringMaterialsand
Technology115(10)(1993)417–423.
[23]M.G.Yuan,Y.Ueda,JournalofEngineeringMaterialsand
Technology118(4)(1996)229–234.
[24]Y.Luo,H.Murakawa,Y.Ueda,JournaloftheSocietyofNaval
ArchitectsofJapan182(1997)783–793.
[25]Y.Luo,H.Murakawa,Y.Ueda,JournaloftheSocietyofNaval
ArchitectsofJapan183(1998)323–333.
[26]D.Deng,H.Murakawa,W.Liang,ComputerMethodsinApplied
MechanicsandEngineering196(45–48)(2007)4613–4627.