大学物理学第版修订版北京邮电大学出版社上册习题答案
时间:2025-04-02
时间:2025-04-02
习
题 3
3.1选择题 (1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m
的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)
02ωmR J J + (B) 02)(ωR m J J + (C) 02ωmR
J (D) 0ω [答案: (A)]
(2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为
(A)13rad/s (B)17rad/s
(C)10rad/s (D)18rad/s
(a) (b)
题3.1(2)图
[答案: (A)]
(3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳
其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度?在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体
(A)动能不变,动量改变。
(B)动量不变,动能改变。
(C)角动量不变,动量不变。
(D)角动量改变,动量改变。
(E)角动量不变,动能、动量都改变。
[答案: (E)]
3.2填空题
(1) 半径为30cm的飞轮,从静止开始以0.5rad·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240?时的切向加速度a
= ,法向
τ
= 。
加速度a
n
[答案:0.15; 1.256]
(2) 如题 3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于
其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。
题3.2(2)图
[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒]
(3) 两个质量分布均匀的圆盘A和B的密度分别为ρ
A 和ρ
B
(ρ
A
>ρ
B
),且
两圆盘的总质量和厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转
动惯量分别为J
A 和J
B
,则有J
A
J
B
。(填>、<或=)
[答案: <]
3.3刚体平动的特点是什么?平动时刚体上的质元是否可以作曲线运动?解:刚体平动的特点是:在运动过程中,内部任意两质元间的连线在各个时刻的位置都和初始时刻的位置保持平行。平动时刚体上的质元可以作曲线运动。
3.4刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同?
解:刚体定轴转动的特点是:轴上所有各点都保持不动,轴外所有各点都在作圆周运动,且在同一时间间隔内转过的角度都一样;刚体上各质元的角量相同,而各质元的线量大小与质元到转轴的距离成正比。因此各质元的角速
度相同,而线速度、向心加速度、切向加速度不一定相同。
3.5刚体的转动惯量与哪些因素有关?请举例说明。
解:刚体的转动惯量与刚体的质量、质量的分布、转轴的位置等有关。如对过圆心且与盘面垂直的轴的转动惯量而言,形状大小完全相同的木质圆盘和铁质圆盘中铁质的要大一些,质量相同的木质圆盘和木质圆环则是木质圆环的转动惯量要大。
3.6 刚体所受的合外力为零,其合力矩是否一定为零?相反,刚体受到的合力矩为零,其合外力是否一定为零?
解:刚体所受的合外力为零,其合力矩不一定为零;刚体受到的合力矩为零,其合外力不一定为零。
3.7 一质量为m 的质点位于(11,y x )处,速度为j v i v v y x ϖϖϖ+=, 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.
解: 由题知,质点的位矢为
作用在质点上的力为
所以,质点对原点的角动量为
作用在质点上的力的力矩为
3.8 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m
时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1
这时它离太阳的距离2r 是多少?(太阳位于椭圆的一个焦点。)
解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有
2211mv r mv r =
∴ m 1026.510
08.91046.51075.81224
102112⨯=⨯⨯⨯⨯==v v r r 3.9 物体质量为3kg ,t =0时位于m 4i r ϖϖ=, 1s m 6-⋅+=j i v ϖϖϖ,如一恒力N 5j f ϖϖ=作用在
物体上,求3秒后,(1)物体动量的变化;(2)相对z 轴角动量的变化.
解: (1) ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p ϖϖϖϖ
(2)解(一) 73400=+=+=t v x x x
即 i r ϖϖ41=,j i r ϖϖϖ5.2572+=
即 j i v ϖϖϖ611+=,j i v ϖ
ϖϖ112+=
∴ k j i i v m r L ϖϖϖϖϖϖϖ72)6(34111=+⨯=⨯=
∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L ϖϖϖϖ 解(二) ∵dt
dz M = ∴ ⎰⎰⨯=⋅=∆t t t F r t M L 00d )(d ϖϖϖϖ
3.10 平板中央开一小孔,质量为m 的小球用细线系 …… 此处隐藏:3473字,全部文档内容请下载后查看。喜欢就下载吧 ……