2019高中数学第一章三角函数三角函数的诱导公式第课时自我小测新人教A版必修
发布时间:2024-11-06
发布时间:2024-11-06
2019
1 1.3 三角函数的诱导公式 1
自我小测
1.下列各式不正确的是( )
A .sin(α+180°)=-sin α
B .cos(-α+β)=-cos(α-β)
C .sin(-α-360°)=-sin α
D .cos(-α-β)=cos(α+β) 2.下列各数中,与cos 1 030°相等的是( )
A .cos 50°
B .-cos 50°
C .sin 50° D.-sin 50°
3.设tan(π+α)=2,则sin(-)+cos(-)sin(+)-cos(+)
αππαπαπα=( ) A .3 B. 13
C .1
D .-1 4.若-480°角的终边上一点(-1,a ),则a 的值为( )
B
C
5.记cos(-80°)=k ,那么tan 100°等于( )
A. k
B
.-k
D
6.已知tan 7πα⎛⎫+ ⎪⎝⎭=5,则tan 67πα⎛⎫- ⎪⎝⎭
=__________. 7.化简:sin(π+α)sin(2π-α)-cos(π-α)cos(-2π-α)=__________. 8.已知x =
sin(k +)sin παα+cos(k +)cos παα (k ∈Z ),则x 构成的集合是__________. 9.求sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°的值.
10.已知α是第三象限角,且
f (α)=sin(-)cos(2-)tan(-+2)tan(-+)sin(3-)
παπααπαππα. (1)化简f (α);
(2)若sin α=-35
,求f (α); (3)若α=-313
π,求f (α).
2019
参考答案
1. 解析:cos(-α+β)=cos[-(α-β)]=cos(α-β).答案:B
2.解析:cos 1 030°=cos(1 080°-50°)
=cos(-50°)=cos 50°.
答案:A
3.解析:∵tan(π+α)=2,∴tan α=2.
∴sin(-)+cos(-)
sin(+)-cos(+)
αππα
παπα
=
-sin(-)-cos
-sin+cos
παα
αα
=sin+cos
sin-cos
αα
αα
=
tan+1
tan-1
α
α
=3.
答案:A
4.解析:sin(-480°)=-sin 480°=-sin(360°+120°)=-sin(180°-60°)
而由三角函数定义得sin(
,
=-
2
a
答案:C
5.解析:∵cos(-80°)=cos 80°=k
,
.故选B.
答案:B
6.解析:tan
6
7
π
α
⎛⎫
-
⎪
⎝⎭
=tan
7
π
πα
⎡⎤
⎛⎫
-+
⎪
⎢⎥
⎝⎭
⎣⎦
=-tan
7
π
α
⎛⎫
+
⎪
⎝⎭
=-5.
答案:-5
7.解析:原式=-sin αsin(-α)+cos αcos(2π+α)
=sin2α+cos2α=1.
答案:1
8.解析:当k=2n(n∈Z)时,
2
2019
3 x =sin(2n +)sin παα+cos(2n +)cos παα
=2. 当k =2n +1(n ∈Z )时,x =()sin 2n+1+sin παα⎡⎤⎣⎦
+()cos 2n+1+cos παα⎡⎤⎣⎦=sin(+)sin παα+cos(+)cos παα
=-2. 故x 构成的集合是{2,-2}.
答案:{2,-2}
9. 解:原式=-sin(3×360°+120°)·cos(3×360°+210°)-
cos(2×360°+300°)·sin(2×360°+330°)+tan(2×360°+225°)
=-sin(180°-60°)·cos(180°+30°)-cos(360°-60°)·sin(360°-30°)+tan(180°+45°)
=sin 60°cos 30°+cos 60°sin 30°+tan 45°
=2
×212×12+1=2. 10. 解:(1)f (α)=
-sin cos tan -tan sin ααααα=cos α. (2)∵sin α=-35
,且α是第三象限角, ∴f (α)=cos α
45. (3)f 313π⎛⎫- ⎪⎝⎭=cos 313π⎛⎫- ⎪⎝⎭
=cos 3π⎛⎫-
⎪⎝⎭
=cos 3π=12.