计量经济学第四第五章课后习题
时间:2025-04-21
时间:2025-04-21
习题4.1
1) 存在 2= 2且 3= 3。 因为 2=
2
(yix2i)(x3i) (yix3i)(x2ix3i)
222
(x2)(x) (xx)2i3ii3i
,
当x2与x3之间的相关系数为零时,离差形式的 2=
x
2i3i
x=0,有
2
(yix2i)(x3i)
(x)(x)
2
2i
23i
yx=
x
i2i22i
= 2
同理, 3= 3
2) 会
3) 存在Var( 2)=Var( 2)且Var( 3)=Var( 3)。 因为Var( 2)= 当r23=0时, Var( 2)=
2
x
2
22i
(1 r)
223
,
2)x22i(1 r23
=
2
x22i
=Var( 2)
同理,Var( 3)=Var( 3)。
习题4.3
1.回归结果如下所所示:
Dependent Variable: LNY Method: Least Squares Date: 05/16/12 Time: 19:34 Sample: 1985 2007 C LNX1 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood -3.060149 1.656674 0.337427 0.092206 -9.069059 17.96703 0.0000 0.0000 1.276500 -1.313463 -1.165355 1275.093 0.992218 Mean dependent var 9.155303 0.991440 S.D. dependent var 0.118100 Akaike info criterion 0.278952 Schwarz criterion 18.10482 F-statistic 建立如下模型:
lnYt=β1+β2lnGDPt +β3lnCPIt+ui
即:lnYt= -3.060149 +1.656674 lnGDPt +-1.057053lnCPIt+ui
(0.337427) (0.092206) (0.214647) t =(-9.069059) (17.96703) (-4.924618) R2=0.992218
R2=0.991440 F=1275.093 df=20
2.数据中有多重共线性,居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且其简单相关系数呈现正向变动。
3.模型1
Dependent Variable: LNY Method: Least Squares Date: 05/16/12 Time: 19:52 Sample: 1985 2007 Variable
Coefficient
Std. Error
t-Statistic
Prob.
C R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood -4.090667 0.384252 -10.64579 0.0000 1.276500 -0.606254 -0.507515 1198.698 0.982783 Mean dependent var 9.155303 0.981963 S.D. dependent var 0.171438 Akaike info criterion 0.617208 Schwarz criterion 8.971921 F-statistic
lnYt= A1 + A2 lnGDPt + ui = -4.090667 +1.218573 lnGDP Se = ( 0.384252) ( 0.035196) R2 =0.982783,
模型2
Dependent Variable: LNY Method: Least Squares Date: 05/16/12 Time: 19:58 Sample: 1985 2007 Included observations: 23
Variable C R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -5.442420 Std. Error 1.253662 t-Statistic -4.341218 Prob. 0.0003 1.276500 1.441037 1.539775 136.4437 0.000000
R2 =0.981963
0.866619 Mean dependent var 9.155303 0.860268 S.D. dependent var 0.477166 Akaike info criterion 4.781435 Schwarz criterion -14.57192 F-statistic 0.152312 Prob(F-statistic)
lnYt= B1 + B2 lnCPIt + ui = -5.442420 + 2.663790 lnCPIt Se =( 1.253662) + ( 0.228046) R2=0.866619 ,
R2=0.860268 F=136.4437
模型3
Dependent Variable: LNX1 Method: Least Squares Date: 05/16/12 Time: 20:04 Sample: 1985 2007 Variable C LNX2
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -1.437984 2.245971
Std. Error 0.734328 0.133577
t-Statistic -1.958231 16.81400
Prob. 0.0636 0.0000 1.038480 0.371300 0.470039 282.7107 0.000000
0.930855 Mean dependent var 10.87007 0.927563 S.D. dependent var 0.279498 Akaike info criterion 1.640506 Schwarz criterion -2.269955 F-statistic 0.142984 Prob(F-statistic)
lnGDPt = C1 + C2 lnCPIt + ui = -1.437984 + 2.245971 lnCPIt Se =( 0.734328) + ( 0.133577) R2=0.930855 ,
R2=0.927563 F=282.7107
单方程拟合效果都很好回归系数显著,判定系数较高,GDP和CPI对进口的显著的单一正影响,在这两个变量同时引入模型的影响方向发生了改变,而且根据第三个模型结果可以看出GDP和CPI两者之间线性关系很强。
4.如果仅仅是作预测,可以不太在意这种多重共线性,但如果是进行结构分析,还是应该考 虑多重共线性问题。
习题4.6
OLS回归结果
Dependent Variable: Y Method: Least Squares Date: 05/15/12 Time: 19:35 Sample: 1985 2007 Variable C X1 X2 X3 X4 X5 X6 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Coefficient -76917.33 15.23223 -15.90504 -2.633378 26.26439 0.074759 890.4204 Std. Error 103078.4 4.658786 4.478372 3.649937 11.12634 3.675204 364.5072 t-Statistic -0.746202 3.269570 -3.551523 -0.721486 2.360561 0.020341 2.442806 0.989342 Mean dependent var 0.984368 S.D. dependent var 6477.323 Akaike info criterion 6.29E+08 Schwarz criterion -229.5694 F-statistic
Prob. 0.4671 0.0052 0.0029 0.4817 0.0322 0.9840 0.0274
139423.9
51806.33
20.65821
21.05316
198.9049
建立如下回归模型
Y = β1 + β2X1 + β3X2 +β4X3+β5X4+β6X5+β7X6+β8X7 + ui
= -76917.33 + 15.232X1 -15.905 X2-2.633X3+26.264X4 +0.075X5 + 890.4204X6+2155.185X7 SE=(103078.4) (4.659) (4.478) (3.650)(11.126)(3.675) (364.507) (1498.804) t =(-0.746) (3.2695) (-3.552) (-0.721) (2.361) (0.020) (2.443) (1.438) R2=0.989
R2 =0.984 F=198.905
R2 =0.984 可决系数很高,F=198.905,明显显著。
2.由此可见,该模型R2=0.989 ,
但是当α=0.05时,t2/α (n-k)=t 0.025 (23-8)=2.131,x3 ,x5 ,x7的系数t检验不显著,而且x2,x3系数的符号与预期相反且为负,这表明很可能存在 …… 此处隐藏:13574字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:中央空调机房竣工报告
下一篇:课外活动活动实施方案