复习资料:第6章 塑性成形力学基础

时间:2025-04-16

复习资料:第6章 塑性成形力学基础

1. 什么叫张量?张量有什么性质?

答:张量:由若干个当坐标系改变时满足转换关系的分量组成的集合,称为张量,需要

用空间坐标系中的三个矢量,即9个分量才能完整地表示。

它的重要特征是在不同的坐标系中分量之间可以用一定的线性关系来换算。

基本性质:

1) 张量不变量 张量的分量一定可以组成某些函数f(Pij),这些函数值与坐标轴

无关,它不随坐标而改变,这样的函数,叫做张量不变量。二阶张量存在三个独立

的不变量。

2) 张量可以叠加和分解 几个同阶张量各对应的分量之和或差定义为另一个同阶

张量。两个相同的张量之差定义为零张量。

3) 张量可分为对称张量、非对称张量、反对称张量 若张量具有性质

叫对称张量;若张量具有性质

量;如果张量Pij PjiPij PjiPij Pji,就,且当i=j时对应的分量为0,则叫反对称张,就叫非对称张量。任意非对称张量可以分解为一个对称张量

和一个反对称张量。

4) 二阶对称张量存在三个主轴和三个主值 如果以主轴为坐标轴,则两个下角

标不同的分量均为零,只留下两个下角标相同的三个分量,叫作主值。

2. 如何表示任意斜微分面上的应力?

答:若过一点的三个互相垂直的微分面上的九个应力分量已知,则借助静力平衡条件,

该点任意方向上的应力分量可以确定。

如图14-1所示,设过Q点任一斜切面的

法线N与三个坐标轴的方向余弦为l,m,

n,

l=cos(N,x);

m=cos(N,y);

图14-1 任意斜切微分面上的应力

n=cos(N,z)。

若斜微分面ABC的面积为dF,微分面OBC(x面)、OCA(y面)、OAB(z 面)的微分面

积分别为dFx、dFy、dFz, 则各微分面之间的关系为

dFx

又设斜微分面ABC上的全应力为S,它在三坐标轴方向上的分量为Sx 、Sy 、Sz,由静力平衡条件 Px 0;dFy= mdF; dFz=ndF ,得:

SxdF xdFx yxdFy zxdFz 0

整理得

Sx xl yxm zxn Sy xyl ym zyn Sz xzl yzm zn (14-6)

用角标符号简记为 Sj ijli i,j x,y,z

显然,全应力 222S2 Sx Sy Sz

斜微分面上的正应力 为全应力S在法线N方向的投影,它等于Sx,

的投影之和,即

Sxl Sym SznSySz,在N方向上

(14-7) xl2 ym2 zn2 2( xylm yzmn zxnl)

222斜切微分面上的切应力为 S (14-8)

所以,已知过一点的三个正交微分面上9个应力分量,可以求出过该点任意方向微

分面上的应力,也就是说,这9个应力分量可以全面表示该点应力状况,亦即可以确定该点的应力状态。

3. 应力张量不变量如何表达?

答:应力张量的三个不变量为

J1 1 2 3 J2 ( 1 2 2 3 3 1) J3 1 2 3

其中J1、J2、J3为应力张量第一、第二、第三不变量。

4. 应力偏张量和应力球张量的物理意义是什么?

答:应力:在外力的作用下,变形体内各质点就会产生相互作用的力,称为内力。单位

面积上的内力称为应力,可采用截面法进行分析

应力球张量:也称静水应力状态,其任何方向都是主方向,且主应力相同,均为平

均应力。

特点:在任何切平面上都没有切应力,所以不能使物体产生形状变化,而只能产生

体积变化,即不能使物体产生塑性变形。

应力偏张量:是由原应力张量分解出应力球张量后得到的。应力偏张量的切应力分

量、主切应力、最大切应力及应力主轴等都与原应力张量相同。

特点:应力偏张量只使物体产生形状变化,而不能产生体积变化。材料的塑性变形

是由应力偏张量引起的。

5. 平面应力状态和纯切应力状态有何特点?

答:平面应力状态的特点为:变形体内各质点与某坐标轴垂直的平面上没有应力。

6. 等效应力有何特点?写出其数学表达式。

答:等效应力的特点:等效应力不能在特定微分平面上表示出来,但它可以在一定意义

上“代表”整个应力状态中的偏张量部分,因而与材料的塑性变形密切有关。人们

把它称为广义应力或应力强度。等效应力也是一个不变量。其数学表达式如下:

等效应力在主轴坐标系中定义为

1

2 ( 1 2)2 ( 2 3)2 ( 3 1)2 J2

222在任意坐标系中定义为 1

2( x y)2 ( y z)2 ( z x)2 6( xy yz zx)

7. 已知受力物体内一点的应力张量为

80 5050 ij 500 75 80 75 30 (MPa),

试求外法线方向余弦为l=m=1/2,n=

应力。

解:设全应力为S, sx,2的斜切面上的全应力、正应力和切sy, sz分别为S在三轴中的分量,

Sx xl yxm zxn Sy xyl ym zyn Sz xzl yzm zn

则有:

sx=50 + 50 +80 1

2121=106.6 2

111=-28.0 sy=50 +0 -75 222

111=-18.7 sz=80 -75 -30 222

222S2 Sx Sy Sz 则得到 S =111.79 MPa

则得到 =26.1 MPa Sxl Sym Szn

222而 S 则得到 =108.7 MPa

8、 解释下列概念

条件应力;真实应力;Tresca屈服准则;Mises屈服准则;

2 10 3/S)标准试样,记录答:条件应力:室温下在万能材料拉伸机上准静态拉伸(

下来的拉伸力P与试样标距的绝对伸长 l之间的关系曲线称为拉伸图。若试样的初

始横截面面积为A0, …… 此处隐藏:7618字,全部文档内容请下载后查看。喜欢就下载吧 ……

复习资料:第6章 塑性成形力学基础.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219