R语言vegan包使用教程(8)
时间:2025-07-13
时间:2025-07-13
R语言中的外在软件包“Vegan”是专门用于群落生态学分析的工具。Vegan能够提供所有基本的排序方法,同时具有生成精美排序图的功能,版本更新很快。我们认为Vegan包完全可以取代CANOCO,成为今后排序分析的首选统计工具。
2.3Comparingordinations:Procrustesrotation2ORDINATION:BASICMETHOD
2.3Comparingordinations:Procrustesrotation
Procrustes errors
q
Twoordinationscanbeverysimilar,butthismaybedi culttosee,becauseaxeshaveslightlydi erentorientationandscaling.Actually,innmdsthesign,orientation,scaleandlocationoftheaxesarenotde- ned,althoughmetaMDSusessimplemethodto xthelastthreecompo-nents.ThebestwaytocompareordinationsistouseProcrustesrotation.Procrustesrotationusesuniformscaling(expansionorcontraction)androtationtominimizethesquareddi erencesbetweentwoordinations.PackageveganhasfunctionprocrustestoperformProcrustesanalysis.
HowmuchdidwegainwithusingmetaMDSinsteadofdefaultisoMDS?
q
0.4
q
q
Dimension 2
0.0
q
q
q
q
q
q
>>>>>tmp<-wisconsin(sqrt(varespec))dis<-vegdist(tmp)
vare.mds0<-isoMDS(dis,trace=0)pro<-procrustes(vare.mds,vare.mds0)pro
0.2
q
q
q
q
Call:
procrustes(X=vare.mds,Y=vare.mds0)Procrustessumofsquares:0.156>plot(pro)
0.4 0.2
q
0.4 0.20.00.20.40.6
Dimension 1
Procrustes errors
0.30
Inthiscasethedi erenceswerefairlysmall,andmainlyconcernedtwopoints.Youcanuseidentifyfunctiontoidentifythosepointsinaninteractivesession,oryoucanaskaplotofresidualdi erencesonly:
>plot(pro,kind=
2)
0.250.000.05
Thedescriptivestatisticis“Procrustessumofsquares”orthesumofsquaredarrowsintheProcrustesplot.Procrustesrotationisnonsym-metric,andthestatisticwouldchangewithreversingtheorderofordina-tionsinthecall.Withargumentsymmetric=TRUE,bothsolutionsare rstscaledtounitvariance,andamorescale-independentandsymmetricstatisticisfound(oftenknownasProcrustesm2).
Procrustes residual
0.100.150.20
2.4
5
10
Index
15
20
Eigenvectormethods
methodnmdsmdspcaca
metricanyanyEuclideanChi-square
mappingnonlinearlinearlinear
weightedlinear
djk
N
= (xij xik)2
i=1
Non-metricmultidimensionalscalingwasahardtask,becauseanykindofdissimilaritymeasurecouldbeusedanddissimilaritieswerenonlinearlymappedintoordination.Ifweacceptonlycertaintypesofdissimilaritiesandmakealinearmapping,theordinationbecomesasimpletaskofrotationandprojection.Inthatcasewecanuseeigenvectormethods.Principalcomponentsanalysis(pca)andcorrespondenceanalysis(ca)arethemostimportanteigenvectormethodsincommunityordination.Inaddition,principalcoordinatesanalysisa.k.a.metricscaling(mds)isusedoccasionally.PcaisbasedonEuclideandistances,caisbasedonChi-squaredistances,andprincipalcoordinatescanuseanydissimilarities(butwithEuclideandistancesitisequaltopca).
Pcaisastandardstatisticalmethod,andcanbeperformedwithbaseRfunctionsprcomporprincomp.Correspondenceanalysisisnotasubiq-uitous,butthereareseveralalternativeimplementationsforthatalso.In
8
…… 此处隐藏:679字,全部文档内容请下载后查看。喜欢就下载吧 ……