2010年1月4月7月10月全国自考线性代数(经管类)试题及答案

发布时间:2024-10-12

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

全国2010年10月高等教育自学考试

线性代数(经管类)试题 课程代码:04184

说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)

表示矩A的秩.

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设A为3阶矩阵,|A|=1,则|-2AT|=( ) A.-8 B.-2 C.2

D.8

2.设矩阵A= 1

1 ,B=(1,1),则AB=( )

A.0 B.(1,-1) C. 1

1

D. 1

1 1 1

3.设A为n阶对称矩阵,B为n阶反对称矩阵,则下列矩阵中为反对称矩阵的是( ) A.AB-BA B.AB+BA C.AB D.BA

4.设矩阵A的伴随矩阵A*= 12 -1

34

,则A= ( )

A.

1

4 3 1 1 2 2

21 B. 2 34 C. 1

2 12

34

D.

1

42 2

31

5.下列矩阵中不是..

初等矩阵的是( ) 101

A.

100

010 B. 001

C. 100

010 030 010 000 100 D. 001 201

6.设A,B均为n阶可逆矩阵,则必有( )

A.A+B可逆 B.AB可逆 C.A-B可逆 D.AB+BA可逆 7.设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( )

A. α1, α2,β线性无关 B. β不能由α1, α2线性表示

C. β可由α1, α2线性表示,但表示法不惟一 D. β可由α1, α2线性表示,且表示法惟一

8.设A为3阶实对称矩阵,A的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为( A.0 B.1 C.2

D.3

2x1 x2 x3 0

9.设齐次线性方程组

x1 x2 x3 0有非零解,则 为( )

x1

x2 x3 0

)

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

A.-1 B.0 C.1 D.2

10.设二次型f(x)=xTAx正定,则下列结论中正确的是( )

A.对任意n维列向量x,xTAx都大于零 B.f的标准形的系数都大于或等于零 C.A的特征值都大于零 D.A的所有子式都大于零 二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。 11.行列式

01

的值为_________. 12

12

12.已知A= 23 ,则|A|中第一行第二列元素的代数余子式为_________.

11 1 3 3

13.设矩阵A= ,P= 01 ,则AP=_________. 24

14.设A,B都是3阶矩阵,且|A|=2,B=-2E,则|A-1B|=_________.

15.已知向量组α1,=(1,2,3),α2=(3,-1,2), α3=(2,3,k)线性相关,则数k=_________.

1 3

2 5

16.已知Ax=b为4元线性方程组,r(A)=3, α1, α2, α3为该方程组的3个解,且 1 , 1 3 ,则该线性方程组的通

37 4 9

解是_________.

1 1

17.已知P是3阶正交矩,向量 3 , 0 ,则内积(P ,P ) _________.

2 2

18.设2是矩阵A的一个特征值,则矩阵3A必有一个特征值为_________.

12

19.与矩阵A= 03 相似的对角矩阵为_________.

1 2 T

20.设矩阵A= 2k ,若二次型f=xAx正定,则实数k的取值范围是_________.

三、计算题(本大题共6小题,每小题9分,共54分)

01

21.求行列式D=

201012210102

. 10

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

0 10 1 20

22.设矩阵A= 100 ,B 2 10 ,求满足矩阵方程XA-B=2E的矩阵X.

001 000 1 1 2 2

23.若向量组 1 1 , 2 1 , 3 6 , 4 0 的秩为2,求k的值.

1 3 k 2k 23 2 2 A 1 10,b 24.设矩阵 1 .

121 0

(1)求A-1;

(2)求解线性方程组Ax=b,并将b用A的列向量组线性表出. 25.已知3阶矩阵A的特征值为-1,1,2,设B=A2+2A-E,求 (1)矩阵A的行列式及A的秩.

(2)矩阵B的特征值及与B相似的对角矩阵.

x1 2y1 2y2 y3

26.求二次型f(x1,x2,x3)=- 4 x1x2+ 2x1x3+2x2x3经可逆线性变换 x2 2y1 2y2 y3所得的标准形.

x 2y3 3

四、证明题(本题6分)

27.设n阶矩阵A满足A2=E,证明A的特征值只能是 1.

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

全国2010年7月高等教育自学考试

线性代数(经管类)试题

课程代码:04184

试卷说明:在本卷中,AT表示矩阵A的转置矩阵;A*表示A的伴随矩阵;r(A)表示矩阵A的秩;| A |表示A的行列式;

E表示单位矩阵。

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设3阶方阵A=(α1,α2,α3),其中αi(i=1,2,3)为A的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6 D.12

3 0 2 0

2.计算行列式

2 10 5 0 0 0 2 0 2 3 2 3

=( )

A.-180 B.-120 C.120 D.180 3.若A为3阶方阵且| A-1 |=2,则| 2A |=( ) A.

1

B.2 C.4 D.8 2

4.设α1,α2,α3,α4都是3维向量,则必有( ) A.α1,α2,α3,α4线性无关 C.α1可由α2,α3,α4线性表示

B.α1,α2,α3,α4线性相关 D.α1不可由α2,α3,α4线性表示

5.若A为6阶方阵,齐次线性方程组Ax=0的基础解系中解向量的个数为2,则r(A)=( ) A.2 B.3 C.4 D.5 6.设A、B为同阶方阵,且r(A)=r(B),则( )

A.A与B相似 B.| A |=| B | C.A与B等价 D.A与B合同 7.设A为3阶方阵,其特征值分别为2,1,0则| A+2E |=( ) A.0 B.2 C.3 D.24 8.若A、B相似,则下列说法错误的是( ) ..

A.A与B等价 B.A与B合同 C.| A |=| B | D.A与B有相同特征值 9.若向量α=(1,-2,1)与β=(2,3,t)正交,则t=( ) A.-2 B.0 C.2 D.4

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

10.设3阶实对称矩阵A的特征值分别为2,1,0,则( )

A.A正定 B.A半正定 C.A负定 D.A半负定

二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。

3 2 2 1 1

11.设A= 0 1 ,B= ,则AB=_________________.

0 1 0 2 4

12.设A为3阶方阵,且| A |=3,则| 3A-1 |=______________. 13.三元方程x1+x2+x3=1的通解是_______________.

14.设α=(-1,2,2),则与α反方向的单位向量是_________________.

15.设A为5阶方阵,且r(A)=3,则线性空间W={x | Ax=0}的维数是______________. 16.设A为3阶方阵,特征值分别为-2,

1

,1,则| 5A-1 |=______________. 2

17.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_________________.

2 1 0

18.实对称矩阵 1 0 1 所对应的二次型f (x1, x2, x3)=________________.

0 1 1

1 1

19.设3元非齐次线性方程组Ax=b有解α1= 2 ,α2= 2 且r(A)=2,则Ax=b的通解是_______________.

3 3 1

20.设α= 2 ,则A=ααT的非零特征值是_______________.

3

三、计算题(本大题共6小题,每小题9分,共54分)

2 0 0 0 1

21.计算5阶行列式D=

0 2 0 0 0 0 0 2 0 0 1 0 0 0 2

2 0 0 1 0 0 1 4 3

22.设矩阵X满足方程 0 1 0 X 0 0 1 = 2 0 1 求X.

0 0 2 0 1 0 1 2 0

x1 x2 3x3 x4 1

23.求非齐次线性方程组 3x1 x2 3x3 4x4 4的

x 5x 9x 8x 0

234 1

.

24.求向量组α1=(1,2,-1,4),α2=(9,100,10,4),α3=(-2,-4,2,-8)的秩和一个极大无关组.

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

2 1 2

25.已知A= 5 a 3 的一个特征向量ξ =(1,1,-1)T,求a,b及ξ所对应的特征值,并写出对应于这个特征值的

1 b 2

全部特征向量.

2 1 1 2

26.设A= 1 2 1 a ,试确定a使r(A)=2.

1 1 2 2

四、证明题(本大题共1小题,6分)

27.若α1,α2,α3是Ax=b(b≠0)的线性无关解,证明α2-αl,α3-αl是对应齐次线性方程组Ax=0的线性无关解.

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

全国2010年4月高等教育自学考试

线性代数(经管类)试题

课程代码:04184

一、单项选择题(本大题共20小题,每小题1分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.已知2阶行列式

a1b1

a2b2

=m ,

b1c1

b2c2

=n ,则

b1b2

a1 c1a2 c2

=( )

A.m-n B.n-m C.m+n D.-(m+n) 2.设A , B , C均为n阶方阵,AB=BA,AC=CA,则ABC=( ) A.ACB B.CAB C.CBA D.BCA

3.设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为( ) A.-8 B.-2 C.2 D.8

100 100 a11a12a13 a113a12a13

4.已知A= a21a22a23 ,B= a213a22a23 ,P= 030 ,Q= 310 ,则B=( )

aaa a3aa 313233 313233 001 001

A.PA B.AP C.QA D.AQ 5.已知A是一个3×4矩阵,下列命题中正确的是( )

A.若矩阵A中所有3阶子式都为0,则秩(A)=2 B.若A中存在2阶子式不为0,则秩(A)=2 C.若秩(A)=2,则A中所有3阶子式都为0 D.若秩(A)=2,则A中所有2阶子式都不为0 6.下列命题中错误的是( ) ..A.只含有一个零向量的向量组线性相关 C.由一个非零向量组成的向量组线性相关

B.由3个2维向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关

7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )

A.α1必能由α2,α3,β线性表出 B.α2必能由α1,α3,β线性表出 C.α3必能由α1,α2,β线性表出 D.β必能由α1,α2,α3线性表出

8.设A为m×n矩阵,m≠n,则齐次线性方程组Ax=0只有零解的充分必要条件是A的秩( ) A.小于m B.等于m C.小于n D.等于n 9.设A为可逆矩阵,则与A必有相同特征值的矩阵为( )

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

A.AT B.A2 C.A-1 D.A*

222

10.二次型f(x1,x2,x3)=x1 x2 x3 2x1x2的正惯性指数为( )

A.0 B.1 C.2 D.3

二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 11.行列式

20072009的值为_________________________.

1 13 20 ,则ATB=____________________________. 12.设矩阵A=,B=

201 01

13.设4维向量 (3,-1,0,2)T,β=(3,1,-1,4)T,若向量γ满足2 γ=3β,则γ=__________. 14.设A为n阶可逆矩阵,且|A|=

1

,则|A-1|=___________________________. n

15.设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=__________________. 16.齐次线性方程组

x1 x2 x3 0

的基础解系所含解向量的个数为________________.

2x x 3x 03 12

1

1

17.设n阶可逆矩阵A的一个特征值是-3,则矩阵 A2 必有一个特征值为_____________.

3

1 2 2

18.设矩阵A= 2x0 的特征值为4,1,-2,则数x=________________________.

200

a 1

19.已知A=

2 0 0 2

b0 是正交矩阵,则a+b=_______________________________。

01

1

20.二次型f(x1, x2, x3)=-4x1x2+2x1x3+6x2x3的矩阵是_______________________________。

三、计算题(本大题共6小题,每小题9分,共54分)

a

21.计算行列式D=a2

bb2b b3

c

c2的值。 c c3

a a3

22.已知矩阵B=(2,1,3),C=(1,2,3),求(1)A=BTC;(2)A2。

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

23.设向量组 1 (2,1,3,1)T, 2 (1,2,0,1)T, 3 (-1,1,-3,0)T, 4 (1,1,1,1)T,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量。

1

24.已知矩阵A= 0

0

210

3 14

(2)解矩阵方程AX=B。 2 ,B= 25 .(1)求A-1;

1 3 1

x1 2x2 3x3 4

25.问a为何值时,线性方程组 2x2 ax3 2有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,

2x 2x 3x 6

23 1

要求用一个特解和导出组的基础解系表示全部解)。

2

26.设矩阵A= 0

0

03a

0 1 a 的三个特征值分别为1,2,5,求正的常数a的值及可逆矩阵P,使P-1AP= 0 3 0

020

0 0 。 5

四、证明题(本题6分)

27.设A,B,A+B均为n阶正交矩阵,证明(A+B)-1=A-1+B-1。

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

全国2010年1月高等教育自学考试 《线性代数(经管类)》试题及答案

课程代码:04184

试题部分

说明:本卷中,AT表示矩阵A的转置,αT表示向量α的转置,E表示单位矩阵,|A|表示方阵A的行列式,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩.

一、单项选择题(本大题共10小题,每小题2分,共30分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。错选、多选或未选均无分。

2x2y2z4

1.设行列式403 1,则行列式01 ( )

3

111111

xyz

A.

2

3

B.1

C.2

8D. 3

2.设A,B,C为同阶可逆方阵,则(ABC)-1=( ) A. A-1B-1C-1 C. C-1A-1B-1

B. C-1B-1A-1 D. A-1C-1B-1

3.设α1,α2,α3,α4是4维列向量,矩阵A=(α1,α2,α3,α4).如果|A|=2,则|-2A|=( ) A.-32 C.4

B.-4 D.32

4.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 C. α1,α2,α3,α4一定线性相关

B. α1一定可由α2,α3,α4线性表出 D. α1,α2,α3一定线性无关

5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 C.3

B.2 D.4

6.设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )

A.1 C.3

B.2 D.4

7.设A是m×n矩阵,已知Ax=0只有零解,则以下结论正确的是( ) A.m≥n

B.Ax=b(其中b是m维实向量)必有唯一解

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

C.r(A)=m D.Ax=0存在基础解系

4 52

5 738.设矩阵A= ,则以下向量中是A的特征向量的是( )

6 94

A.(1,1,1)T C.(1,1,0)T

B.(1,1,3)T D.(1,0,-3)T

3 =

1 11

9.设矩阵A= 13 1 的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ

( )

111

A.4 B.5 C.6

D.7

10.三元二次型f (x1,x2,x3)=x222

1 4x1x2 6x1x3 4x2 12x2x3 9x3

的矩阵为( 123 A. 246 B. 143

046 369 369 126 123 C. 246 D. 240 069

3129

二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。

12

3

11.行列式459=_________.

6713 5200 12.设A=

2

100 0021

,则A-1=_________. 0

011

13.设方阵A满足A3-2A+E=0,则(A2-2E)-1=_________. 14.实数向量空间V={(x1,x2,x3)|x1+x2+x3=0}的维数是_________.

15.设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________. 16.设A是m×n实矩阵,若r(ATA)=5,则r(A)=_________. 17.设线性方程组 a11 x1 1 1a1 x

2 1 有无穷多个解,则a=_________.

11a x3 2

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

18.设n阶矩阵A有一个特征值3,则|-3E+A|=_________.

19.设向量α=(1,2,-2),β=(2,a,3),且α与β正交,则a=_________.

2220.二次型f(x1,x2,x3) 4x2 3x3 4x1x2 4x1x3 8x2x3的秩为_________.

三、计算题(本大题共6小题,每小题9分,共54分) 2345

3456

21.计算4阶行列式D=.

4567

5678

2 31

22.设A= 4 52 ,判断A是否可逆,若可逆,求其逆矩阵A-1.

5 73

23.设向量α=(3,2),求(αTα)101.

24.设向量组α1=(1,2,3,6),α2=(1,-1,2,4),α3=(-1,1,-2,-8),α4=(1,2,3,2). (1)求该向量组的一个极大线性无关组;

(2)将其余向量表示为该极大线性无关组的线性组合. x1 x2 2x4 0

25.求齐次线性方程组 4x1 x2 x3 x4 0的基础解系及其通解.

3x x x 0

123 32 2

26.设矩阵A= 0 10 ,求可逆方阵P,使P-1AP为对角矩阵.

42 3

四、证明题(本大题6分)

27.已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

答案部分

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

2010年自考线性代数(经管类04184),绝对史上最全。好东西哦!

2010年1月4月7月10月全国自考线性代数(经管类)试题及答案.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219