公务员考试排列组合专题(5)

时间:2025-04-19

公务员考试排列组合专题学懂了这个,公考排列组合满分不在话下

分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。 第一步:第五次测试的有C(4.1)种可能;

第二步:前四次有一件正品有C(6.1)中可能。

第三步:前四次有P(4.4)种可能。

∴ 共有种可能。

4.捆绑与插空

例11. 8人排成一队

(1)甲乙必须相邻 (2)甲乙不相邻

(3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻

(5)甲乙不相邻,丙丁不相邻

分析:(1)甲乙必须相邻,就是把甲乙 捆绑(甲乙可交换) 和7人排列 P(7.7)*2

(2)甲乙不相邻,P(8.8)-P(7.7)*2。

(3)甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻 P(6.6)*2*2

甲乙必须相邻且与丙不相邻 P(7.7)*2-P(6.6)*2*2

(4)甲乙必须相邻,丙丁必须相邻 P(6.6)*2*2

(5)甲乙不相邻,丙丁不相邻,

P(8.8)-P(7.7)*2*2+P(6.6)*2*2

例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?

分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即P(5.2)。 例13. 马路上有编号为l,2,3, ,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?

分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。

∴ 共C(6.3)=20种方法。

5.间接计数法

.(1)排除法

例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形?

分析:有些问题正面求解有一定困难,可以采用间接法。 所求问题的方法数=任意三个点的组合数-共线三点的方法数,

∴ 共种。

公务员考试排列组合专题(5).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219