学习数学建模需要哪些书籍及软件

发布时间:2021-06-05

我也要参加今年九月份的数学建模比赛,以下是我们老师给我们的几点建议,希望对你有些帮助。

赛前学习内容

1建模基础知识、常用工具软件的使用

一、掌握建模必备的数学基础知识(如初等数学、高等数学等),数学建模中常用的但尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。

二、,针对建模特点,结合典型的建模题型,重点学习一些实用数学软件(如 Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性开发,尤其注意同一数学模型可以用多个软件求解的问题。

例如, 贷款买房问题: 某人贷款8 万元买房,每月还贷款880.87 元,月利率1%。

(1)已经还贷整6 年。还贷6 年后,某人想知道自己还欠银行多少钱,请你告诉他。

(2)此人忘记这笔贷款期限是多少年,请你告诉他。

这问题我们可以用 Mathematica 、Matlab、Lindo 、Lingo 等多个不同软件包编程求解 2 建模的过程、方法

数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如下图1来表示。

3常用算法的设计

建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素了,而算法好坏将直接影响运算速度的快慢答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)设计算法,这里列举常用的几种数学建模算法.

(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab 软件实现)。

(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)。

(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件实现)。

(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple 作为工具)。

(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中,通常使用Lingo 软件实现)。

(6)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)。

(7)最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用,通常使用Lingo、 Matlab、SPSS 软件实现)。

4 论文结构,写作特点和要求

学习数学建模需要哪些书籍及软件.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219