人教版2016年中考数学一轮复习导学案(专题16_二次函数的应用) 含答案
时间:2025-07-14
时间:2025-07-14
16.二次函数的应用
题组练习一(问题习题化)
1.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________ .
2.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()C
A.B.
C.D.
3. 抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c= 0 .
◆知识梳理
知识技能要求
握
题组练习二(知识网络化)
4.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.
上述4个判断中,正确的是()B
A.①② B.①④ C.①③④D.②③④
5.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:
①其图象与x轴一定相交;
②若a<0,函数在x>1时,y随x的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;
④无论a取何值,函数图象都经过同一个点.
其中所有正确的结论是___ .
6.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.
7.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.
8.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是___________________.
9.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y 轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).
(1)求该抛物线的解析式及顶点M的坐标.
(2)求△EMF与△BNF的面积之比.
题组练习三(中考考点链接)
10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_________ .
11.如图,已知直角坐标平面上的△ABC,AC=CB,∠ACB=90°,且A(﹣1,0),
B(m,n),C(3,0).若抛物线y=ax2+bx﹣3经过A、C两点.
(1)求a、b的值;
(2)将抛物线向上平移若干个单位得到的新抛物线恰好经过点B,求新抛物线
的解析式;
(3)设(2)中的新抛物的顶点P点,Q为新抛物线上P点至B点之间的一点,以点Q为圆心画图,当⊙Q与x轴和直线BC都相切时,联结PQ、BQ,求四边形ABQP的面积.
答案:
1. y=﹣(x+6)2+4.
2.C;
3.0;
4.B
5. ①③④;
6.;
7.25;
8. y=﹣(x+2)2等
9. 解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,
解得:c=3,
∴y=﹣x2+2x+3,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点M(1,4);
(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,
∴点B(3,0),
∴EM=1,BN=2,
∵EM∥BN,
∴△EMF∽△BNF,
∴=()2=()2=.
10.﹣1<x<3
11.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0)、C(3,0),∴,
解得:;
(2)设抛物线向上平移k个单位后得到的新抛物线恰好经过点B,则新抛物线的解析式为y=x2﹣2x﹣3+k,
∵A(﹣1,0)、C(3,0),
∴CB=AC=3﹣(﹣1)=4,
∵∠ACB=90°,∴点B的坐标为(3,4).
∵点B(3,4)在抛物线y=x2﹣2x﹣3+k上,
∴9﹣6﹣3+k=4,
解得:k=4,
∴新抛物线的解析式为y=x2﹣2x+1;
(3)设⊙Q与x轴相切于点D,与直线BC相切于点E,连接QD、QE,如图所示,则有QD⊥OC,QE⊥BC,QD=QE,
∴∠QDC=∠DCE=∠QEC=90°,
∴四边形QECD是矩形.
∵QD=QE,
∴矩形QECD是正方形,
∴QD=DC.
设点Q的横坐标为t,
则有OD=t,QD=DC=OC﹣OD=3﹣t,
∴点Q的坐标为(t,3﹣t).
∵点Q在抛物线y=x2﹣2x+1上,
∴t2﹣2t+1=3﹣t,
解得:t1=2,t2=﹣1.
∵Q为抛物线y=x2﹣2x+1上P点至B点之间的一点,
∴t=2,点Q的坐标为(2,1),
∴OD=2,QD=CD=1.
由y=x2﹣2x+1=(x﹣1)2得顶点P的坐标为(1,0),
∴OP=1,PD=OD﹣OP=2﹣1=1,
∴S四边形ABQP=S△ACB﹣S△PDQ﹣S梯形DQ BC
=AC•BC﹣PD•QD﹣(QD+BC)•DC
=×4×4﹣×1×1﹣×(1+4)×1
=5,
∴四边形ABQP的面积为5.
…… 此处隐藏:144字,全部文档内容请下载后查看。喜欢就下载吧 ……