弗兰克赫兹实验思考题
时间:2025-07-10
时间:2025-07-10
课后思考题
1. 二极管内Ar原子被激发,原子存在能级,原子只能停留在一定的状态上,原子辐射是只能发射一定频率的光。
2.如果以E0代表氩原子的基态能量,E1代表氩原子的第一激发态的能量,当电子与氩原子相碰撞时传递给氩原子的能量恰好是 0= ,则氩原子就会从基态跃迁到第一激发态,而相应的电势差V0称为氩原子的第一激发电位。从第一激发态跃迁到第二激发态相应的电势差就是第二激发电位。
3.稀有气体。
4. 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成辐值较大的电信号, 也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。四极管种类很多,常见的有:束射四极管,直热四极管和多子四极管等。 四极管,有音色浑厚,具有速度感等特点,实际上纯粹意义的四极管只是在电子管的发展史上作为验证管出现过而没有进入实用,这是另一话题不去说它,下面就说前面提及的目前在商品功放里超过半数以上的机种用的这东西----束射四极管。
5. 弗兰克-赫兹实验的历史
1913年,丹麦物理学家玻尔(N. Bohr)将量子概念应用于当时人们尚未接受的卢瑟福(E. Rutherfond)原子核结构模型上,并提出了原子结构的量子理论,成功地解释了氢光谱,为量子力学的创建起了巨大的推动作用。但玻尔理论的定态假设与经典电动力学明显对立,而频率定则带有浓厚的人为因素,故当时很难为人们所接受。正是在这样的历史背景下,1914年,两位德国的实验物理学家夫兰克(J. Frank)和赫兹(G. Hertz)采用慢电子与稀薄气体原子碰撞的方法,利用两者的非弹性碰撞将原子激发到较高能态,通过测量电子与原子碰撞时交换某一定值的能量,直接证明了原子能级的存在,并验证了频率定则,为玻尔理论提供了独立于光谱研究方法的直接的实验证明。由于这项卓越的成就,这两位物理学家获得了1925年的诺贝尔物理学奖。
夫兰克—赫兹实验至今仍是探索原子内部结构的主要手段之一。所以在近代物理实验中,仍把它作为传统的经典实验。
6. 正确的实验&错误的解释
弗兰克和G.赫兹最初是依据斯塔克的理论,斯塔克认为线光谱产生的原因是原子或分子的电离,光谱频率ν与电离电势V有如下的量子关系:hν=eV。
弗兰克和G.赫兹在 1914年以后有好几年仍然坚持斯塔克的观点,他们相信自己的实验无可辩驳地证实了斯塔克的观点,认为4.9V电势差引起了汞原子的电离。他们也许因为战争期间信息不通,对玻尔的原子理论不甚了解,所以还在论文中表示他们的实验结果不符合玻尔的理论。其实,玻尔在得知弗兰克-赫兹的实验后,早在1915年就指出,弗兰克-赫兹实验的4.9V正是他的能级理论中预言的汞原子的第一激发电势。
1919年,弗兰克和G.赫兹表示同意玻尔的观点。弗兰克在他的诺贝尔奖领奖词中讲道:“在用电子碰撞方法证明向原子传递的能量是量子化的这一科学研究的发展中,我们所作的一部分工作犯了许多错误,走了一些弯路,尽管玻尔理论已为这个领域开辟了笔直的通道。后来我们认识到了玻尔理论的指导意义,一切困难才迎刃而解。我们清楚地知道,我们的工作所以会获得广泛的承认,是由于它和普朗克,特别是和玻尔的伟大思想和概念有了联系。”