初中数学知识点汇总(最全)(初中数学知识点汇总完整版)
时间:2026-01-18
时间:2026-01-18
在学习、工作、生活中,我们每个人都需要不断地学习,想要高效的学习,就一定要掌握正确的学习方法!下面小编为大家带来初中数学知识点汇总,希望大家喜欢!
初中数学知识点汇总
幂函数的性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的`各自情况。
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
解题方法:换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
练习题:
1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。
(1)求f(log2x)的最小值及对应的x值;
(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)< p="">
2、已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f-1(x)图象上的点。
(1)求实数k的值及函数f-1(x)的解析式;
(2)将y=f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求实数m的取值范围。
初中数学学习方法
课前认真预习
预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。
具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15—20分钟。在时间允许的情况下,还可以将练习册做完。
要记好课堂笔记
要将平时的单元检测出现的错误问题归纳一下,并且将错题再做一遍。然后总结为什么错,错在什么地方。如果整张试卷考得都不好,那么可以复印将试卷重做一遍。还可以将作业上的错题、难题、易错题重做一遍。这样对以后的做题过程中会有意想不到的收获。
另外在数学考试技巧上,如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差。但上课听讲、认真答题及提高准确率、总结经验和方法技巧才是 …… 此处隐藏:386字,全部文档内容请下载后查看。喜欢就下载吧 ……