曲线和曲面CGnb8==2011
发布时间:2021-06-08
发布时间:2021-06-08
第8章 曲线和曲面提出问题由离散点来近似地决定曲线和曲面,即通过测量或 实验得到一系列有序点列,根据这些点列需构造出 一条光滑曲线,以直观地反映出实验特性、变化规 律和趋势等。2013-8-2 1
第8章 曲线和曲面工业产品的几何形状: 初等解析曲面
复杂方式自由变化的曲线曲面模线样板法
计 算 机 辅 助 几 何 设 计 CAGD(Computer AidedGeometric Design)2013-8-2 2
8.1 曲线曲面基础8.1.1 曲线曲面数学描述的发展 弗格森双三次曲面片 孔斯双三次曲面片 样条方法 Bezier方法 B样条方法 有理Bezier 非均匀有理B样条方法3
2013-8-2
8.1.2 曲线曲面的表示要求1.唯一性2.几何不变性
3.易于定界4.统一性 5.易于实现光滑连接 6.几何直观2013-8-2 4
8.1.3 曲线曲面的表示
p p(t )参数表示方法的优点:
t [0,1]
1.点动成线2.选取具有几何不变性的参数曲线曲面表示形式。 3.斜率
dy m dy / dt n dy / dt dx m dx / dt n dx / dt2013-8-2 5
4.t∈[0,1] ,使其相应的几何分量是有界的 5.可对参数方程直接进行仿射和投影变换 6.参数变化对各因变量的影响可以明显地表示出 来
2013-8-2
8.1.4 插值和逼近样条 采用模线样板法表示和传递自由曲线曲面的形状称为样条。
样条曲线是指由多项式曲线段连接而成的曲线,在每段的边界处满足特定的连续条件。 样条曲面则可以用两组正交样条曲线来描述。2013-8-2 7
曲线曲面的拟合:当用一组型值点来指定曲线曲面的 形状时,形状完全通过给定的型值点列。
图8-12013-8-2
曲线的拟合8
曲线曲面的逼近:当用一组控制点来指定曲线曲面 的形状时,求出的形状不必通过控制点列
图8-22013-8-2
曲线的逼近9
求给定型值点之间曲线上的点称为曲线的插值。 将连接有一定次序控制点的直线序列称为控制 多边形或特征多边形
图8-22013-8-2
曲线的逼近10
8.1.5 连续性条件假定参数曲线段pi以参数形式进行描述:
pi pi (t ) 参数连续性
t [ti0 , t i1]
几何连续性
2013-8-2
1.参数连续性
0阶参数连续性,记作C0 连续性,是指曲线的几何位置连接,即
pi (ti1 ) p(i 1) (t(i 1)0 )2013-8-2 12
1阶参数连续性记作C1连续性,指代表两个相邻曲线段的方程在相
交点处有相同的一阶导数:
pi (ti1 ) p(i 1) (t(i 1) 0 ) 且pi (ti1 ) p( i 1) (t(i 1) 0 )2013-8-2 13
2阶参数连续性,
记作C2 连续性,指两个相邻曲线段的方程在相交点处具有相同的一阶和二阶导数。
(a)0阶连续性
(b)1阶连续性
(c)2阶连续性
2013-8-2
2.几何连续性0阶几何连续性,记作G0连续性,
与0阶参数连续性的定
义相同,满足:
pi (ti1 ) p(i 1) (t(i 1)0 )1阶几何连续性,记作G1 连续性,指一阶导数在相邻段 的交点处成比例
2阶几何连续性,记作G2 连续性,指相邻曲线段在交点处其一阶和二阶导数均成比例。2013-8-2 15
8.1.6 样条描述n次样条参数多项式曲线的矩阵:
x(t ) ant a2t a1t a0 n 2 1 y (t ) bnt b2t b1t b0 z (t ) c t n c t 2 c t 1 c n 2 1 0 n 2 1
t [0,1]
2013-8-2
an x(t ) y (t ) t n t 1 p (t ) a1 z (t ) a0 T C T M S G t [0,1]
bn cn b1 c1 b0 c0
基矩阵 几何约束条件 基函数(blenging function),或称混合函数。2013-8-2 17
8.2 三次样条给定n+1个点,可得到通过每个点的分段三次多项式曲线:
x(t ) a x t 3 bx t 2 c x t d x 3 2 y (t ) a y t by t c y t d y z (t ) a t 3 b t 2 c t d z z z z
t [0,1]
2013-8-2
8.2.1 自然三次样条定义:给定n+1个型值点,现通过这些点列构造一条 自然三次参数样条曲线,要求在所有曲线段的公共
连接处均具有位置、一阶和二阶导数的连续性,即自然三次样条具有C2连续性。
还需要两个附加条件才能解出方程组
2013-8-2
特点: 1.只适用于型值点分布比较均匀的场合 2.不能“局部控制”
2013-8-2
8.2.2 三次Hermite样条
定义:假定型值点Pk 和Pk+1 之间的曲线段为p(t),t∈[0,1],给定矢量Pk、Pk+1、Rk 和Rk+1,则满足下列条件的三
次参数曲线为三次Hermite样条曲线:
p(0) Pk , p(1) Pk 1 p (0) Rk , p (1) Rk 12013-8-2 21
下一篇:中国古诗智趣谈