新人教版九年级数学上册第二十五章概率初步全(12)
发布时间:2021-06-08
发布时间:2021-06-08
(3)指导学生构造表格
首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个。接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况。当A盘指针指向6或8时,B盘指针同样可能指向4、5、7三个数字中的任意一个。一共会产生9种不同的结果。
【设计意图】 这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。 (4)学生独立填写表格,通过观察与计算,得出结论(即列表法)
从表中可以发现:A盘数字大于B盘数字的结果共有5种。
54
∴P(A数较大)= , P(B数较大)=
99
∴P(A数较大)> P(B数较大)
∴选择A装置的获胜可能性较大。
.
在学生填写表格过程中,注意向学生强调数对的有序性。
由于游戏是分两步进行的,我们也可用其他的方法来列举。即先转动A盘,可能出现1,6,8三种结果;第二步考虑转动B盘,可能出现4,5,7三种结果。
(5)解法二:
由图知:可能的结果为: (1,4),(1,5),(1,7), (6,4),(6,5),(6,7),
(8,4),(8,5),(8,7)。共计9种。
54∴P(A数较大)= , P(B数较大)=
99
∴P(A数较大)> P(B数较大)
∴选择A装置的获胜可能性较大。
.
然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像一棵树,所以称为树形图(在幻灯片上放映)。列表和树形图是列举法求概率的两种常用的方法。
【设计意图】自然地学生感染了分类计数和分步计数思想。 2.自主分析,再探新知
通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练掌握这两种方法,我选用了下列两道例题(本节教材P151—P152的例5和例6)。
例1:同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2。
例1是教材上一道“掷骰子”的问题,有了引例作基础,学生不难发现:引例涉及两个转盘,这里涉及两个骰子,实质都是涉及两个因素。于是,学生通过类比列出下列表。
由上表可以看出,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。由所列表格可以发现:
(1)满足两个骰子的点数相同(记为事件A)的结果有6个,即(1,1),(2,2),(3,3),(4,
614),(5,5),(6,6),所以P(A)==
366
。
[满足条件的结果在表格的对角线上]
(2)满足两个骰子的点数的和是9(记为事件B)的结果有4个,即(3,6),(4,5),(5,4),
41(6,3),所以P(B)==。
369
[满足条件的结果在(3,6)和(6,3)所在的斜线上]
11
(3)至少有一个骰子的点数为2(记为事件C)的结果有11个,所以P(C)=。
36
[满足条件的结果在数字2所在行和2所在的列上] 接着,引导学生进行题后小结:
当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。运用列表法求概率的步骤如下:
①列表 ;
m
②通过表格计数,确定公式P(A)=中m和n的值;
nm
③利用公式P(A)=计算事件的概率。
n
分析到这里,我会问学生:“例1题目中的“掷两个骰子”改为“掷三个骰子”,还可以使用列表法来做吗?”由此引出下一个例题。
例2: 甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。从三个口袋中各随机地取
出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少? (2)取出的三个球上全是辅音字母的概率是多少?
例2与前面两题比较,有所不同:要从三个袋子里摸球,即涉及到3个因素。此时同学们会发现用列表法就不太方便,可以尝试树形图法。
本游戏可分三步进行。分步画图和分类排列相关的结论是解题的关键。
甲
乙 丙
从图形上可以看出所有可能出现的结果共有12个,即:
A C H A C I A D H A D I A E H A E I B C H B C I
B D H B D I B E H B E I
(幻灯片上用颜色区分) 这些结果出现的可能性相等。
(1)只有一个元音字母的结果(黄色)有5个,即ACH,ADH,BCI,BDI,BEH,所以P(一个元音)
5
; 12
有两个元音的结果(白色)有4个,即ACI,ADI,AEH,BEI,所以P(两个元音)
41 ; 123
全部为元音字母的结果(绿色)只有1个,即AEI ,所以P(三个元音)
1。 12
21 126
。
(2)全是辅音字母的结果(红色)共有2个,即BCH,BDH,所以P(三个辅音)通过例2的解答,很容易得出题后小结:
当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。运用树形图法 求概率的步骤如下:(幻灯片) ①画树形图 ;
上一篇:孙子兵法之三十六计(竹简版)
下一篇:钢管贝雷梁拱架计算