2010年山西省数据概述大纲(3)
发布时间:2021-06-08
发布时间:2021-06-08
根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。
typedef struct
{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问
}stack;
stack s[],s1[];//栈,容量够大
BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。
{top=0; bt=ROOT;
while(bt!=null ||top>0)
{while(bt!=null && bt!=p && bt!=q) //结点入栈
{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下
if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点
{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存
if(bt==q) //找到q 结点。
for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配
{pp=s[i].t;
for (j=top1;j>0;j--)
if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}
}
while(top!=0 && s[top].tag==1) top--; //退栈
if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历
}//结束while(bt!=null ||top>0)
return(null);//q、p无公共祖先
}//结束Ancestor
12、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。
void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数
node edge[];
scanf( "%d%d",&e,&n) ; //输入边数和顶点数。
for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。
{edge[0]=edge[i]; j=i-1;
while (edge[j].w<edge[0].w) edge[j+1]=edge[j--];
edge[j+1]=edge[0]; }//for
k=1; eg=e;
while (eg>=n) //破圈,直到边数e=n-1.
{
if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除
k++; //下条边
}//while
}//算法结束。
connect()是测试图是否连通的函数,可用