2008年山西省中考数学试题(4)
发布时间:2021-06-08
发布时间:2021-06-08
指针所在区域的数字之积为偶数时,乙胜。如果指针恰好在分割线上,则需重新转动转盘。 (1)用树状图或列表的方法,求甲获胜的概率。
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由。 23.(本题8分)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点。求证:GE是⊙O的切线。 24.(本题8分)某文化用品商店用200元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元? 25.(本题12分)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF。
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明。
(2)判断四边形ABDF是怎样的四边形,并说明理由。 (3)若AB=6,BD=2DC,求四边形ABEF的面积。
26.(本题14分)如图,已知直线l1的解析式为
y 3x 6,直线l1与x轴、y轴分别相交于A、B两
点,直线l2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动。点P、Q同时出发,且移动
的速度都为每秒1个单位长度,设移动时间为t秒(1 t 10)。 (1)求直线l2的解析式。
(2)设△PCQ的面积为S,请求出S关于t的函数关系式。 (3)试探究:当t为何值时,△PCQ为等腰三角形?
上一篇:计算机基础大作业
下一篇:16项自动磁补偿系统