2The Navier-Stokes and Euler Equations(6)
发布时间:2021-06-08
发布时间:2021-06-08
math
2TheNavier–StokesandEulerEquations–FluidandGasDynamics
26
Undertheassumptionofincompressibilityofthe uidtheNavier–Stokesequations,determiningthe uidvelocityuandthe uidpressurep,read:
u+(u·grad)u+gradp=νΔu+fdivu=0
HerexdenotesthespacevariableinR2orR3dependingonwhether2or3dimensional owsaretobemodeledandt>0isthetimevariable.Thevelocity eldu=u(x,t)(vector eldonR2or,resp.,R3)isinR2orR3,resp.,andthepressurep=p(x,t)isascalarfunction.f=f(x,t)isthe(given)externalforce eld(againtwoand,resp.three-dimensional)actingonthe uidandν>0thekinematicviscosityparameter.ThefunctionsuandparethesolutionsofthePDEsystem,the uiddensityisassumedtobeconstant(say,1)hereasconsistentwiththeincompressibilityassumption.ThenonlinearNavier–Stokessystemhastobesupplementedbyaninitialconditionforthevelocity eldandbyboundaryconditionsifspatiallycon ned uid owsareconsidered(orbydecayconditionsonwholespace).Atypicalboundaryconditionistheso-calledno-slipconditionwhichreads
u=0
ontheboundaryofthe uiddomain.
Theconstraintdivu=0enforcestheincompressibilityofthe uidandservestodeterminethepressurepfromtheevolutionequationforthe uidvelocityu.
Ifν=0thenthesocalledincompressibleEuler8equations,validforverysmallviscosity ows(ideal uids),areobtained.NotethattheviscousNavier–StokesequationsformaparabolicsystemwhiletheEulerequations(inviscidcase)arehyperbolic.TheNavier–StokesandEulerequationsarebasedonNew-ton’scelebratedsecondlaw:forceequalsmasstimesacceleration.Theyareconsistentwiththebasicphysicalrequirementsofmass,momentumandenergyconservation.
TheincompressibleNavier–StokesandEulerequationsallowaninterestingsimpleinterpretation,whentheyarewrittenintermsofthe uidvorticity,de nedby
ω:=curlu.
Clearly,theadvantageofapplyingthecurloperatortothevelocityequationistheeliminationofthepressure.Inthetwo-dimensionalcase(whenvorticitycanberegardedasascalarsinceitpointsintothex3directionwhenu3iszero)weobtain
Dω=νΔω+curlf,Dt
8/~history/Mathematicians/Euler.html