预测是大数据核心价值(3)
时间:2025-03-13
时间:2025-03-13
4、用户行为预测
基于用户搜索行为、浏览行为、评论历史和个人资料等数据,互联网业务可以洞察消费者的整体需求,进而进行针对性的产品生产、改进和营销。《纸牌屋》选择 演员和剧情、百度基于用户喜好进行精准广告营销、阿里根据天猫用户特征包下生产线定制产品、亚马逊
预测用户点击行为提前发货均是受益于互联网用户行为预 测。
受益于传感器技术和物联网的发展,线下的用户行为洞察正在酝酿。免费商用WIFI、ibeacon技术、摄像头影像监控、室内定位技术、NFC传感器网络、排队叫号系统,可以
探知用户线下的移动、停留、出行规律等数据,进行精准营销或者产品定制。
5、人体健康预测
中医可以通过望闻问切手段发现一些人体内隐藏的慢性病,甚至看体质便可知晓一个人将来可能会出现什么症状。人体体征变化有一定规律,而慢性病发生前人体已经会有一些持续性异常。理论上来说,如果大数据掌握了这样的异常情况,便可以进行慢性病预测。
结合智能硬件,慢性病的大数据预测变为可能。可穿戴设备和智能健康设备帮助网络收集人体健康数据,心率、体重、血脂、血糖、运动量、睡眠量等状况。如果 这些数据足够精准且全面,并且有可以形成算法的慢性病预测模式,或许未来你的设备就会提醒你的身体罹患某种慢性病的风险。KickStarter上的My Spiroo便可收集哮喘病人的吐气数据来指导医生诊断其未来的病情趋势。急性病却很难预测,突变和随机性特征使之难以预测。
6、疾病疫情预测
基于人们的搜索情况、购物行为预测大面积疫情爆发的可能性,最经典的“流感预测”便属于此类。如果来自某个区域的“流感”、“板蓝根”搜索需求越来越多,自然可以推测该处
有流感趋势。
继世界杯、高考、景点和城市预测之后,百度近日推出了疾病预测产品。目前可以就流感、肝炎、肺结核、性病这四种疾病,对全国每一个省份以及大多数地级市 和区县的活跃度、趋势图等情况,进行全面的监控。未来,百度疾病预测监控的疾病种类将从目前的4种扩展到30多种,覆盖更多的常见病和流行病。用户可以根 据当地的预测结果进行针对
性的预防。
7、灾害灾难预测
气象预测是最典型的灾难灾害预测。地震、洪涝、高温、暴雨这些自然灾害如果可以利用大数据能力进行更加提前的预测和告知便有助于减灾防灾救灾赈灾。与过 往不同的是,过去的数据收集方式存在着死角、成本高等问题,物联网时代可以借助廉价的传感器摄像头和无线通信网络,进行实时的数据监控收集,再利用大数据 预测分析,做到更精准的自然
灾害预测。