张书涵_符号三角形问题

发布时间:2021-06-07

关于符号三角形数与n的关系的研究与实现

云南师范大学 计算机应用技术 张书涵

1 问题描述

在一般情况下,符号三角形的第一行有n个符号。符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。

例如图1:由14个“+”和14个“-”组成的符号三角形。2个同号下面都是“+”,2个异号下面都是“-” - + - + + + 。 +

+ - - - - +

- + + + -

- + + - - + - - - +

图1 符号三角形

本文就是计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同,并且探讨两种符号数相同的不同符号三角形的个数与n的关系。

2 问题分析

用n元组x[1:n]表示符号三角形的第一行。X[i]=1表示第一行第i个符号为“+”, X[i]=0表示第一行第i个符号为“-”。可行性约束函数为,当前符号三角形所包含的“+”个数与“-”个数均不超过n*(n+1)/4 。

容易看出,第1行n个符号的数值不同,将直接导致符号三角形的数值F(n)不同。显然,符号三角形的个数F(n)是随着n的变化而变化。那么,得知F(n)与n必然存在一种关系。其次,一个符号三角形有n(n+1)/2个符号,显然这个公式的分子n,n+1中必有一个为偶数。

记G(n)为一个符号三角形所包含的符号数,假定n为偶数。

n

则上述的公式可改写成:G n n 1 。而且n/2必须再次为偶数,不然

2

就不满足条件:符号三角形的符号数G(n)所含的“+”和“—”的个数相同。所以,n必然是4的倍数,即n=4k,其中k=1,2,3,······。

根据上面的论述,易知当公式的分子n,n+1中有且只有一个为4的倍数,此探讨才有意义,并且研究的条件再次收缩。

3 问题解决

用穷举法列出n和符号数以及符号三角形数F(n)的映射表,如表1所示。

张书涵_符号三角形问题.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219