The existence problem for dynamics of dissipative systems in(17)
发布时间:2021-06-06
发布时间:2021-06-06
Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following $C^{\ast}$-algebraic setting: A given hermitian dissipative mapping $\delta$ is densely defined in a u
fortheoperatorδitself.
Foreachn=1,2,...,wenowconsiderthetensor-productconstructionoftheC -algebraAwiththen-by-ncomplexmatricesMn;andwede neAn=A Mn,δn=δ idn,theoperatorobtainedbyapplicationofδtoeachentryaijinthematrixrepresentationofelementsinAn,ωn=ω trnwheretrndenotesthenormalizedtraceonMn,πωn:theGNSrepresentationofAnassociatedtoωn.
Theproblemistoshowthateachoftheoperatorsδnisdissipative.WeshowthatinfactδnisimplementedbyadissipativeHilbert-spaceoperatorintherepresentationπωn.Hence,the rstpartoftheproofappliesandyieldstheconclusionoftheclaimsinceeachrepresentationπωnisfaithful,beingthetensorproductoffaithfulrepresentations.
LetHndenotetherepresentationHilbertspaceofπωn.Weproceedto ndadissipative
operatorLninHnsuchthatδnisimplementedbyLn.Inviewof(IX.1)thismeansthatπωn(δn(a))=Lnπωn(a)+πωn(a)L n
foralla∈D(δn)=D(δn) Mn(algebraictensorproduct) Anasanoperatoridentityonπωn(D(δn)) n Hn.Here ndenotesthecyclicvectorfortherepresentationπωn,i.e.,
ωn(a)= πωn(a) n| n
Ournextstepistheveri cationofthefollowing:
Reωn(a δn(a))≤0
Ln n=0,
ωn(a δn(a))= Lnπωn(a) n|πωn(a) n fora∈D(δn).foralla∈D(δn),(IX.7)(IX.8)(IX.9)foralla∈An.(IX.6)
Itwillfollowfrom(IX.7)and(IX.9)thatanimplementingoperatorLnsatisfying(IX.8)mustnecessarilybedissipative.
Notethat(IX.8)isveri edforn=1byassumption.
intothisidentityyieldsidentity(IX.9)forthecasen=1.
LetTndenotethetrace-vectorforthetracerepresentativeτnofMn.Thenπωn=π τn,andtherefore
πωn(a b) Tn| Tn = π(a) τn(b)Tn| Tn
= π(a) | τn(b)Tn|Tn =ω(a)trn(b)
=ω trn(a b)=ωn(a b)
Henceω(a δ(a))= π(δ(a)) |π(a) = Lπ(a) +π(a)L |π(a) .SubstitutionofL = L =0
上一篇:食品营养与健康论文
下一篇:第九册语文教学计划安排