2009年山东省滨州市中考数学试题及答案
发布时间:2024-11-28
发布时间:2024-11-28
滨州市二○○九年初级中学学业水平考试
数 学 试 题
温馨提示:
1. 本试题共8页,满分120分,考试时间为120分钟.
b4ac b2
2. 抛物线y ax bx c(a 0)的顶点坐标是 .
4a 2a
2
1.截止目前,滨州市总人口数约373万,此人口数用科学记数法可表示为( ) A.3.73 10
4
B.3.73 10
5
C.3.73 10
6
D.3.73 10
7
2.对于式子 ( 8),下列理解:(1)可表示 8的相反数;(2)可表示 1与 8的乘积;(3)可表示 8的绝对值;(4)运算结果等于8.其中理解错误的个数是( ) A.0 B.1 C.2 D.3
3.从编号为1到10的10张卡片中任取1张,所得编号是3的倍数的概率为( ) A.
1 10
B.
2 10
C.
3 10
D.
1 5
4.从上面看如右图所示的几何体,得到的图形是( )
A. B. C. D. (第4题图)
5.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A.矩形 B.直角梯形 C.菱形 D.正方形 6.已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是( ) A.0 d 1 B.d 5 C.0 d 1或d 5 D.0≤d 1或d 5 7.小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是( )
/
A. B. C. D.
8.已知y关于x的函数图象如图所示,则当y 0时,自变量x的取值范围是( ) A.x 0 B. 1 x 1或x 2
C.x 1 D.x 1或1 x 2 9.如图所示,给出下列条件:
① B ACD; ② ADC ACB;
ACAB2
; ④AC AD AB.
CDBC
其中单独能够判定△ABC∽△ACD的个数为( )
③
A
A.1 B.2 C.3 D.4
10.已知△ABC中,AB 17,AC 10,BC边上的高
C
AD 8, 则边BC的长为( )
(第9题图)
A.21 B.15 C.6 D.以上答案都不对
二、填空题:本大题共8小题,每小题填对得4分,满分32分.只要求填写最后结果.
m2 4mn 4n2
11.化简: .
m2 4n2
12.数据1、5、6、5、6、5、6、6的众数是 ,中位数是 ,方差是 . 13.已知点A是反比例函数y 的面积 .
3
图象上的一点.若AB垂直于y轴,垂足为B,则△AOBx
2x3x2 3x
14.解方程2,则方程可化为 . 2时,若设y 2
x 1xx 1
15.大家知道|5| |5 0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6 3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|a 5|在数轴上的意义是 .
B
16.某楼梯的侧面视图如图所示,其中AB 4米,
BAC 30°, C 90°,因某种活动要求铺设红色地毯,
C A 则在AB段楼梯所铺地毯的长度应为 .
(第16题图)
17.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是 . 18.在平面直角坐标系中,△ABC顶点A的坐标为(2,3),若以原点O为位似中心,画
△AEC的位似图形△A B C ,使△ABC与△A B C 的相似比等于
1
,则点A 的坐标2
为 .
三、解答题:本大题共7小题,满分58分.解答时请写出必要的文字说明与推演过程. 19.(本题满分5分)
1 0
计算: 1 |2| 5 (2009 π).
2
2
1
20.(本题满分6分)
为推进阳光体育活动的开展,某校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图
如下:
篮球足球 25%
90
(1)求该班学生人数;
(2)请你补上条形图的空缺部分;
(3)求跳绳人数所占扇形圆心角的大小.
21.(本题满分7分)
如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点, P 30°,连接AO、AB、AC.求证:△ACB≌△APO.
C P O B
(第21题图)
22.(本题满分8分)
观察下列方程及其解的特征:
1
2的解为x1 x2 1; x151
(2)x 的解为x1 2,x2 ;
x221101
(3)x 的解为x1 3,x2 ;
x33
(1)x
…… ……
解答下列问题:
126
的解为 ; x5
11
(2)请猜想:关于x的方程x 的解为x1 a,x2 (a 0);
xa
126
(3)下面以解方程x 为例,验证(1)中猜想结论的正确性.
x5
(1)请猜想:方程x
解:原方程可化为5x 26x 5.
(下面请大家用配方法写出解此方程的详细过程)
23.(本题满分10分) 根据题意,解答下列问题:
2
(1)如图①,已知直线y 2x 4与x轴、y轴分别交于A、B两点,求线段AB的长; (2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),
N( 2, 1)之间的距离;
(3)如图③,P2(x1,y2)是平面直角坐标系内的两点.
1(x1,y1),P求证:PP12
P(x
11 (第23题图①)
(第23题图②)
(第23题图③)
24.(本题满分10分)
某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少? (3)请画出上述函数的大致图象.
25.(本题满分12分)
如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB 20cm,DC 30cm, ADC 45°.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC. (1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15, 0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长. A B
D C (第25题图①) (第25题图②)
滨州市二○○九年初级中学学业水平考试
数学试题(A)解答参考及评分标准
评卷说明:
1.选择题的每小题和填空题中的每个空,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分标准进行评分.
3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但后续部分最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.
二、填空题(本大题共8小题,每小题4分,满分32分) 11.
m 2n5
12.6,5.5,(分值分配:1分、1分、2分)
m 2n233
14.2y 2
y2
13.
15.表示数a的点与表示 5的点之间的距离 16.(2米(或5.464米) 17.
5
x 5 2
18.(4,6)或( 4, 6)
三、解答题(本大题共7小题,满分58分) 19.(本题满分5分)
解:原式 1 22 5 ································· 4分(四个考查点,做对1个就得1分)
2 ··························································································································· 5分
20.(本题满分6分)
解:(1)由扇形图可知,乒乓球小组人数占全班人数的
1
. 4
由条形图可知,乒乓球小组人数为12. ··············································································· 1分 故全班人数为12
1
································································································· 2分 48. ·
4
(注:只有最后一步做对也得满分,但只有结果不得分.) (2)由扇形图可知,篮球小组人数为48 25% 12. 由条形图可知,足球小组人数为16.
故跳绳小组人数为48 (16 12 12) 8. ········································································· 3分 所以各小组人数分布情况的条形图为
············································································ 4分(注:本小题只画对图也得满分2分.)
81
································································ 5分 , ·
4861
所以,它所占扇形圆心角的大小为360° 60°. ·························································· 6分
6
(3)因为跳绳小组人数占全班人数的
21.(本题满分7分)
证明: PA为 O的切线, PAO 90°. ·································································· 1分 又 P 30°, AOP 60°, ······················································································ 2分
1
··································································································· 3分 C AOP 30°, ·
2
······················································································································ 4分 C P, ························································································································ 5分 AC AP. ·
又BC为 O直径, CAB PAO 90°, ································································ 6分
·························································································· 7分 △ACB≌△APO(ASA). ·
(注:其它方法按步骤得分.)
22.(本题满分8分) 解:(1)x1 5,x2
1; ································································································· 1分 5
a2 11(2)(或a ); ·································································································· 3分
aa
(3)二次项系数化为1,得x
2
2
2
26
···································································· 4分 x 1. ·
5
2
26 13 13
x 1 , ·配方,得x ································································· 5分 5 5 5 13 144
x . ················································································································ 6分
525
2
1312
····································································································· 7分 . ·
55
1
解得x1 5,x2 .··········································································································· 8分
5
1
经检验,x1 5,x2 都是原方程的解(此环节有无暂不得分与扣分)
5
开方,得x
23.(本题满分10分)
解:(1)由y 0,得x 2,所以点A的坐标为( 2,····················· 1分 0),故OA 2. ·同理可得OB 4. ················································································································ 2分 所以在Rt△AOB中,AB
································································· 3分
(2)作MP x轴,NP y轴,MP交NP于点P. ···················································· 4分 则MP NP,P点坐标为(3,·················································································· 5分 1). ·故PM 4 ( 1) 5,PN 3 ( 2) 5. ······································································ 6分 所以在Rt△MPN中,MN . ······························································· 7分 (注:若直接运用了(3)的结论不得分.)
y轴,P2P交PP(3)作P2P x轴,PP11于点P.
则P,点P的坐标为(x2,y1). ············································································ 8分 2P PP1
x2 x1(不加绝对值符号此处不扣分). 故P2P y2 y1,PP··································· 9分 1
所以在Rt△P2PP12 1中,PP24.(本题满分10分)
解:(1)y (60 x)(300 20x) 40(300 20x), ······················································ 3分 即y 20x 100x 6000. ····························································································· 4分 因为降价要确保盈利,所以40 60 x≤60(或40 60 x 60也可). 解得0≤x 20(或0 x 20). ···················································································· 6分 (注:若出现了x 20扣1分;若直接写对结果,不扣分即得满足2分.) (2)当x
2
················································ 10分
100
······················································································ 7分 2.5时, ·
2 ( 20)
4 ( 20) 6000 1002
6125, y有最大值
4 ( 20)
即当降价2.5元时,利润最大且为6125元. ········································································ 8分 (3)函数的大致图象为(注:右侧终点应为圆圈,若画成实点扣1分;左侧终点两种情况均可.) ································································································································ 10分
25.(本题满分12分)
解:(1)作AE DC,BF DC,垂足分别为E,F.
···················· 1分 AB∥DC, 四边形AEFB为矩形, AE BF,AB EF 20. ·
又 AD BC,
1
··························· 2分 Rt△ADE≌Rt△BCF(HL), DE FC (30 20) 5. ·
2
又 ADE BCF 45°,
···························································································· 3分 AE BF DE FC 5. ·
又OD OC 15, OE OF 10.
····································································· 4分 5). ·5),(10, 点A,B的坐标分别为( 10,
(2)设抛物线的函数解析式为y ax. ············································································ 5分 由点B(10,5)在其图象上得5 100a,解得a
2
1
. 20
抛物线的函数解析式为y
12
················································································· 6分 x. ·
20
∥DC, 点M,N关于y轴对称, 又 MN
点N的横坐标为15,代入y
故标志的高度为
1245
. x得y
204
45
cm. ········································································································ 8分 4
(3)镀膜示意图如下:
20cm
45°
··············································································································································· 10分 由示意图可知,镀膜外围周长l由四条线段长和四条半径为3cm的弧长构成,
故l 2 20 30
135 π 345 π 3
2 2 50 6π.
180180
所以镀膜的外围周长为50 6π)cm. ·································································· 12分
上一篇:会计设计网上作业1
下一篇:高考地理区位因素归纳总结