2125_02_26 Petroleum Technology, Volume 1-2
发布时间:2024-11-28
发布时间:2024-11-28
Petroleum Technology, Volume 1-2
914TOLUENEVol.
2
TOLUENE
1.Introduction
Toluene[108-88-3],C7H8,isacolorless,mobileliquidwithadistinctivearo-maticodorsomewhatmilderthanthatofbenzene.Thenametoluenederivesfromanaturalresin,balsamofTolu,namedforasmalltowninColombia,SouthAmerica.Toluenewasdiscoveredamongthedegradationproductsobtainedbyheatingthisresin.
PriortoWorldWarI,themainsourceoftoluenewascokeovens.Atthattime,trinitrotoluene(TNT)wasthepreferredhighexplosiveandlargequantitiesoftoluenewererequiredforitsmanufacture.Toaugmentthesup-ply,toluenewasobtainedforthe rsttimefrompetroleumsourcesbysubject-ingnarrow-cutnaphthascontainingrelativelysmallamountsoftoluenetothermalcracking.Thetolueneconcentratesoproducedwasthenpuri edandusedforthemanufactureofTNT.Productionfrompetroleumwasdiscon-tinuedshortlyafterWorldWarI.PetroleumagainbecamethesourcefortoluenewiththeadventofcatalyticreformingandtheneedforlargequantitiesoftolueneforuseinaviationfuelduringWorldWarII.Sincethen,manufac-tureoftoluenefrompetroleumsourceshascontinuedtoincrease,andmanu-facturefromcokeovensandcoal-tarproductshascontinuedtodecrease.
Tolueneisgenerallyproducedalongwithbenzene,xylenes,andC9-aromaticsbythecatalyticreformingofC6–C9naphthas.Theresultingcrudereformateisextracted,mostfrequentlywithsulfolaneortetraethyleneglycolandacosolvent,toyieldamixtureofbenzene,toluene,xylenes,andC9-aromatics,whicharethenseparatedbyfractionation.Therehavebeenrecenttechnologicaldevelopmentstoproducebenzene,toluene,andxylenesfrompyrolysisoflighthydrocarbonsC2–C5,LPG,andnaphthas(seeXYLENES).ThemajorityofthetolueneproducedannuallyintheUnitedStatesisnotisolated,butisblendeddirectlyintothegasolinepoolasacomponentofrefor-mateandofpyrolysisgasoline.Capacityexiststoisolateca12.7Â109galperyear,whichisusedforchemicalsandsolvents.Additionalquantitiesareblendedintogasolinetoincreaseoctanenumber.
2.PhysicalProperties
Thephysicalpropertiesoftoluenehavebeenwellstudiedexperimentally.SeveralphysicalpropertiesarepresentedinTable1(1).Thermodynamicandtransportpropertiescanalsobeobtained,fromothersources(2–7).Thevaporpressureoftoluenecanbecalculatedasfollows(8),wherePisinkPaandTisinK.
3103
310K T 385K
lnP¼14:01Àð1Þ
Kirk-OthmerEncyclopediaofChemicalTechnology.CopyrightJohnWiley&Sons,Inc.Allrightsreserved.10.1002/0471238961.2015122115261511.a01.pub2
Petroleum Technology, Volume 1-2
Vol.2
Table1.PhysicalPropertiesofTolueneProperty
molecularweightmeltingpoint,K
normalboilingpoint,Kcriticaltemperature,Kcriticalpressure,MPaacriticalvolume,L/(gÁmol)criticalcompressibilityfactoracentricfactor ashpoint,K
autoignitiontemperature,K
Gasproperties,298.15K
Hf,kJ/molGf,kJ/molbCp,J/(molÁK)bHvap,kJ/molbHcomb,kJ/molb
viscosity,mPaÁs(¼cP)
ammabilitylimits,inairc,vol%lowerlimitat1atmupperlimitat1atm
Liquidproperties,298.15K
density,L/molCp,J/(molÁK)b
viscosity,mPaÁs(¼cP)
thermalconductivity,W/(mÁK)surfacetension,mNÁm(¼dyn/cm)
Liquidproperties,178.15Kdensity,L/molCp,J/(molÁK)b
viscosity,mPaÁs(¼cP)
thermalconductivity,W/(mÁK)surfacetension,mNÁm(¼dyn/cm)
Solidproperties
densityat93.15K,L/molCpat178.15K,J/(molÁK)b
heatoffusionat178.15K,kJ/molb
ab
TOLUENE915
Value92.14178.15383.75591.804.1080.3160.2640.26227880950.17122.2104.738.26À37340.006981.27.19.38156.50.5480.13327.910.49135.11.470.16242.811.1890.06.62
b
ToconvertMPatopsi,multiplyby145.ToconvertJtocal,divideby4.184.c
At101.3kPa(1atm).
Thesaturatedliquiddensitycanbecalculatedasfollows(7),whererising/LandTisinK.
r¼12:415À0:009548TÀ
65:155
179K T 400K
606:9ÀT
ð2Þ
http://pilationsandbibliographies
Petroleum Technology, Volume 1-2
916TOLUENEVol.2
existforvapor–liquidequilibriummeasurements(9,10),liquid–liquidequili-briummeasurements(11),andazeotropicdata(12,13).
3.ChemicalProperties
Toluene,analkylbenzene,hasthechemistrytypicalofeachexampleofthistypeofcompound.However,thetypicalaromaticringoralkenereactionsareaffectedbythepresenceoftheothergroupasasubstituent.Exceptforhydrogenationandoxidation,themostimportantreactionsinvolveeitherelectrophilicsubstitu-tioninthearomaticringorfree-radicalsubstitutiononthemethylgroup.Addi-tionreactionstothedoublebondsoftheringanddisproportionationoftwotoluenemoleculestoyieldonemoleculeofbenzeneandonemoleculeofxylenealsooccur.
Thearomaticringhashighelectrondensity.Asaresultofthiselectronden-sity,toluenebehavesasabase,notonlyinaromaticringsubstitutionreactionsbutalsointheformationofcharge-transfer(p)complexesandintheformationofcomplexeswithsuperacids.Inthisregard,tolueneisintermediateinreactivitybetweenbenzeneandthexylenes,asillustratedinTable2.
Intheformationofp-complexeswithelectrophilessuchassilverion,hydro-genchloride,andtetracyanoethylene,toluenediffersfromeitherbenzeneorthexylenesbyafactoroflessthantwoinrelativebasicity.Thisdifferenceissmallbecausethecomplexisformedalmostentirelywiththepelectronsofthearo-maticring;theinductiveeffectofthemethylgroupprovidesonlyminorenhance-ment.Incontrast,withHForBF3whichformasigma-typecomplex,orinthecaseofreactionaswithnitroniumionorchlorinewhereformationofthesigmabondsandcomplexesplaysasigni cantrole,themethylgrouppartici-patesthroughhyperconjugationandtherelativereactivityoftolueneisenhancedbyseveralordersofmagnitudecomparedtothatofbenzene.Reactivityofxylenesisenhancedagainbyseveralordersofmagnitudeoverthatoftoluene.Thus,whenonlythepelectronsareinvolved,toluenebehavesmuchlikebenzeneandthexylenes.
Table2.RelativeBasicityandReactivityRelativetoToluene¼1.00
Xylene
ElectrophileAgþaHClbTCEc
HF-BF3d
e
NOþ2Cl2f
a
Benzene0.90
0.660.540.0450.003
Toluene1.001.001.001.001.001.00
Ortho1.081.231.89200.0013.1
Meta1.131.371.622000.001250.00
Para0.981.092.05100.006.3
SolubilityinaqueousAgþ(14).b
KforArþHCl! ArÁHClinn-heptaneatÀ788C(15).c
Kforassociationwithtetracyanoethylene(TCE)inCH2Cl2(16).d
Basicitybycompetitiveprotonation(17,18).e
CH3COONO2in(CH3C)OOat248C(19).f
Cl2inCH3COOHat248C(20).
Petroleum Technology, Volume 1-2
Vol.2TOLUENE917
Whensigmabondsareinvolved,tolueneisamuchstrongerbasethanben-zeneandamuchweakerbasethanthexylenes.Thereasonsforthisdifferencearereadilyshownbycontrastingthecomplexesoftoluenewithhydrogenchlorideintheabsenceandpresenceofaluminumchloride.Intheabsenceofaluminumchloride,hydrogenchlorideislooselyattachedtothep-cloudofelectronsaboveandbelowtheplaneofthering.Withaluminumchloridepresent,theelectrophili-cityisgreatlyenhancedandasigmabondisformedwithaspeci celectronpair;resonancestructuresinvolvingthemethylgroupcontributetothe
stabilization.
AlCl4
Forattackateitherofthetwoorthopositionsortheparaposition,threesuchstructurescanbewritten.
3.1.HydrogenationReactions.Hydrogenoveranickel,platinum,orpaladiumcatalystcanpartiallyortotallysaturatethearomaticring.Thermalhyrogenolysisoftolueneyieldsbenzene,methane,and
biphenyl.
3
CH3
H CH4
3.2.OxidationReactions.Althoughbenzeneandmethanearequite
unreactivetowardtheusualoxidizingagents,thebenzeneringrendersthemethylgroupsusceptibletooxidation.Withoxygenintheliquidphaseandpar-ticularlyinthepresenceofcatalysts,eg,bromine-promotedcobaltandmanga-nese,verygoodyieldsofbenzoicacidare
obtained.
Partialoxidationoftolueneyields
stilbene:
2
3
2 H2O
Thereactions
thatgivesubstitutiononthemethylgrouparegenerallyhightemperatureand
3.3.SubstitutionReactionsontheMethylGroup.
Petroleum Technology, Volume 1-2
918TOLUENEVol.2
free-radicalreactions.Thus,chlorinationatca1008C,orinthepresenceofultra-violetlightandotherfree-radicalinitiators,successivelygivesbenzylchloride,benzalchloride,and
benzotrichloride.
Cl
Thisoxidationreactionwhichyieldsbenzoicacidisanotherexampleofthistypeofreaction.
Inthepresenceofalkalimetalssuchaspotassiumandsodium,tolueneisalkylatedwithethyleneonthemethylgrouptoyield,successively,normalpro-pylbenzene,3-phenylpentane,and3-ethyl-3-phenylpentane
(21).
CH22CH32CH3)3
http://petitionexperimentsshow,forexample,thatat408Cabenzylichydrogenoftolueneis3.3timesasreactivetowardbromineatomsasthetertiaryhydrogenofanalkaneandnearly100milliontimesasreactiveasahydrogenofmethane.
Inthepresenceofapotassiumcatalystdispersedoncalciumoxide,toluenereactswith1,3-butadienetoyield5-phenyl-2-pentane
(22).
CH2CHCHCH3
Whenlithiumisusedasacatalystinconjunctionwithachelatingcom-poundsuchastetramethylethylenediamine(TMEDA),telomersaregenerallyobtainedfromtolueneandethylene(23),wheren¼
010.
C2H4CH2CH3
Theintermediatesinthesebase-catalyzedreactionsarebelievedtobeofthenatureofabenzylcationbecausethereactionproductfromtolueneandpropy-leneisisobutylbenzene,notn-butylbenzene,andthereactionrateisslowerthanwithethylene(24).
3.4.SubstitutionReactionsontheAromaticRing.Topredictthelocationofelectrophilicaromaticringsubstitutions,theelectrophilicreactionscanbemodeledasproceedingthroughanintermediatestepinwhichanegative
Petroleum Technology, Volume 1-2
Vol.2TOLUENE
Table3.IsomerDistributionsintheMonoalkylationsofToluenea,%Enteringgroupmethylethylisopropylt-butyl
a
919
Ortho53.84537.50
Meta17.33029.87
Para28.82532.793
Ref.25.
andpositivechargeareseparatedonthering.Themoststableintermediatesarethoseinwhichthepositivechargeislocalizedonthecarboncontainingthemethylgroup(tertiarycarbon).Theresonancestructuresindicatethatsubstitu-tionwilloccurattheorthoandparapositionsbutnotthemetapositionbecausethispositioncannotberesonance-stabilizedbythecarbonium–methylhypercon-jugatestructures.Thepresenceofthemethylgroupisthereforeortho-andpara-directing.Thereisalsoastericeffectattheorthoposition,asshownbythedatainTable3.Thesedataclearlydemonstratethatbulkygroupscannotentereasilyintothepositionadjacenttothemethylgroupandthereforeattackselectivelyatthepara
position.
Substitutionoftheringhydrogenatomsbyelectrophilicattackoccurswithallofthesamereagentsthatreactwithbenzene.Someofthecommongroupswithwhichtoluenecanbesubstituteddirectly
are
TypicalelectrophilicreactionsaresummarizedinTables3and4.ThereactivityratiosinTable4showthatunderthesameconditions,toluenereactsmorerapidlythanbenzeneandthatthosereactionsthatexhibitthehighestselectivitytotheorthoandparapositionsalsoshowthemostgreatlyenhancedreactivityrelativetobenzene.Inadditiontothesereactions,nitrationcanbeperformedwithHNO3inH2SO4,sulfonationcanbeperformedwithH2SO4andSO3,alkylationcanbeperformedwithRX(X¼ClorBr)withAlCl3,andhalogenationcanbeperformedwithX2(X¼ClorBr)withFeX3.
Thehalogenationreactionconditionscanbechosentodirectattacktothemethylgroup(hightemperatureorlighttoformfree-radicals)orthearomaticring(dark,coldconditionswithFeX3presenttoformelectrophilicconditions).
Tolueneitselfdoesnotundergosubstitutionbynucleophilicattackofanionsbutrequiressubstitutionbystronglyelectronegativegroups,suchasnitrogroups,beforetheringbecomessuf cientlyelectrophilictoreactwithanions.
Petroleum Technology, Volume 1-2
920TOLUENEVol.2
Table4.IsomerDistributionandReactivityRatioforSelectedReactionsa
Isomerdistribution
Reactionchlorination
Conditions
Cl2 in HO3 at 24 C
Ortho58
Meta<1
Para42
ratio
353
chloromethylation
CH2O in HOCCH3 at 60 Cwith HCl and ZnCl2
34.71.364.0112
nitration
90% HO3 at 45 C
56.53.540.024.5
mercuration21.09.569.57.9
sulfonylationisopropylation
a
CH3SO2ClwithAlCl3at1008C
C3H6at408CwithAlCl3
4937.0
1528.5
3633.9
2.1
Ref.25.
3.5.AdditionReactionstotheAromaticRing.Additionstothe
doublebondsinthearomaticringoftolueneresultfrombothfree-radicalandcatalyticreactions.Chlorinationusingfree-radicalinitiatorsattempe-ratures<08Csaturatesthering.However,thisreactionisnotentirelyselec-tive,forinadditiontosaturatingtheringtoyieldhexachlorohexanederivatives,thereactionalsoeffectssubstitutiononthemethylgroup(26).Hydrogenationwithtypicalhydrogenationcatalystsreadilyyieldsmethylcy-clohexane.However,ratesforhydrogenationoftolueneareonly60–70%ofthatforbenzene(27).Thecommercialtechnologyusedforhydrogenatingbenzenetocyclohexane(28)canbeapplieddirectlytothemanufactureofmethylcyclohexane.Bothofthesering-saturatingreactionsprobablyproceedstepwise,butsincetheinitialreactionmustovercomethehighresonanceenergyofthearomaticring,saturationofthesecondandthethirddoublebondismuchmorerapid,withtheresultthatpartiallysaturatedintermedi-atesarenotnormallydetected(29).
4.ManufactureandProcessing
Theprincipalsourceoftolueneiscatalyticreformingofre nerystreams.Thissourceaccountsforca94%ofthetotaltolueneproduced.Anadditional15%is
Petroleum Technology, Volume 1-2
Vol.2TOLUENE921
separatedfrompyrolysisgasolineproducedinsteamcrackersduringthemanu-factureofethylene(qv)andpropylene(qv).Othersourcesareanadditional1%recoveredasaby-productofstyrenemanufactureand4%enteringthemarketviaseparationfromcoaltars.Thereactionstakingplaceincatalyticreformingtoyieldaromaticsaredehydrogenationoraromatizationofcyclo-hexanes,dehydroisomerizationofsubstitutedcyclopentanes,andthecyclo-dehydrogenationofparaf ns.Theformationoftoluenebythesereactionsis
shown.
CH3
H2
CH3CH2CH2CH2CH2CH2CH3
3
H2
3
3 H2
Ofthemainreactions,aromatizationtakesplacemostreadilyandproceedsca7timesasfastasthedehydroisomerizationreactionandca20timesasfastasthedehydrocyclization.Hence,feedsrichestincycloparaf nsaremosteasilyreformed.Hydrocrackingtoyieldparaf nshavingalowerboilingpointthanfeedstockproceedsataboutthesamerateasdehydrocyclization.
Inordertoobtainpurearomatics,crudereformateisextractedtoseparatethearomaticsfromunreactedparaf nsandcycloparaf ns.Thearomaticsare,inturn,separatedbysimplefractionaldistillationtoyieldhighpuritybenzene,toluene,xylenes,andC9aromatics.
Catalyticreforming,whichwasintroducedprimarilytoincreaseoctanevaluesforbothaviationandautomotivefuels,hassincebecomethemainsourceofbenzeneandxylenesaswellasoftoluene.Before1940,both xed-bedand ui-dized-bedunits,typicallyusinga10–15%Mo–Al2O3catalystorsimilarcatalystspromotedwith0.5–2%cobalt,predominated.Improvedoperationwasobtainedin1940bytheintroductionofa0.3–0.6%Pt–Al2O3catalyst.Sinceca1970,furtherimprovementhasbeenobtainedbypromotingthePt–Al2O3catalystwithupto1%chloride,byusingbimetalliccatalystscontaining0.3–0.6%ofbothplatinumandrheniumtoretarddeactivation,andbyusingmolecularsievesaspartofthecatalystbasetogainactivity.Continuouscatalyticreformingwasintroducedca1971.
Becausecatalyticreformingisanendothermicreaction,mostreformingunitscompriseaboutthreereactorswithreheatfurnacesinbetweentominimizekineticandthermodynamiclimitationscausedbydecreasingtemperature.Therearethreebasictypesofoperations,ie,semiregenerative,cyclic,andcontinuous.Inthesemiregenerativeoperation,feedstocksandoperatingconditionsarecontrolledsothattheunitcanbemaintainedon-streamfrom6mo–2yrbeforeshutdownandcatalystregeneration.Incyclicoperation,aswingreactorisemployedsothatonereactorcanberegeneratedwhiletheotherthreearein
Petroleum Technology, Volume 1-2
922TOLUENE
Rheniformer reactors
Vol.2
Fig.1.ChevronResearchCo.Rheniformingprocess(30).(CourtesyofGulfPublishingCo.)
operation.Regeneration,whichmaybeasfrequentasevery24h,permitscontin-uousoperationathighseverity.Sinceca1970,continuousunitshavebeenusedcommercially.Inthistypeofoperation,thecatalystiscontinuouslywithdrawn,regenerated,andfedbacktothesystem.Flowsheetsforrepresentativesofeachofthethreetypesofprocesses,ie,Rheniforming(30),Ultraforming(31),andPlatforming(32),areshowninFigures1,2,and3,respectively.
Thepredominantfeedsforreformingarestraight-runnaphthasfromcrudestills.Naphthasfromcatalystcrackersandnaphthasfromcodestillsarealsoused.TypicalcompositionsaresummarizedinTable5.Typicaloperatingcondi-tionsforcatalyticreformingare1.135–3.548MPa(150–500psi),455–5498C,0.356–1.069m3H2/L(2000–6000ft3/bbl)ofliquidfeed,andaspacevelocity(wtfeedperwtcatalyst)of1–5h.Operationofreformersatlowpressure,high
Fig.2.StandardOil(In)Co.Ultraformingprocess(31).(CourtesyofGulfPublishingCo.)
Petroleum Technology, Volume 1-2
Vol.2
Reactors
Productseparator
Net gas –liquidTOLUENE
Stabilizer
923
Fig.3.UniversalOilProductsPlatformingprocess(32).(CourtesyofGulfPublishingCo.)
http://positionofTypical93–2048CReformerFeeds,Vol%Source
crudestill
catalyticcrackercokingstill
Paraf ns40–5530–4050–55
Cycloparaf ns
40–3015–2530–35
Aromatics10–2040–5010–15
temperature,andlowhydrogenrecycleratesfavorsthekineticsandthethermo-dynamicsforaromaticsproductionandreducesoperatingcosts.However,allthreeofthesefactors,whichtendtoincreasecoking,increasethedeactivationrateofthecatalyst;therefore,operatingconditionsareacompromise.Moredetailedtreatmentofthecatalysisandchemistryofcatalyticreformingisavail-able(33–35).TypicalreformatecompositionsareshowninTable6.
4.1.Toluene,Benzene,andBTXRecovery.Thecompositionofaro-maticscentersontheC7-andC8-fraction,dependingsomewhatontheboilingrangeofthefeedstockused.Mostcatalyticreformateisuseddirectlyingasoline.
http://positionofTypicalReformate,Vol%Componentparaf ns
cycloparaf nsaromaticsC6C7C8C9C10
Value20–302–367–772–315–2020–2815–251–10
Petroleum Technology, Volume 1-2
924TOLUENEVol.2
Thatpartwhichisconvertedtobenzene,toluene,andxylenesforcommercialsaleisseparatedfromtheunreactedparaf nsandcycloparaf nsornaphthenesbyliquid–liquidextractionorbyextractivedistillation.Itisimpossibletoseparatecommercialpurityaromaticproductsfromreformatesbydistillationonlybecauseofthepresenceofazeotropes,althoughcomplicatedfurtherbytheclosenessinboilingpointsofthearomatics,cyclo-paraf n,andunreactedC6-,C7-,andC8-paraf ns.
Mostofthetechnologiespracticedfortherecoveryoftoluene,benzene,andBTXarebasedonchoiceofsolventtodissolvethearomaticsornonaromaticsinthecaseofliquid–liquidextraction,ortoenhancetherelativevolatilityofthenonaromaticsinthecaseofextractivedistillation.UOPandDowChemicalinthe1950sdevelopedtheUdexprocess,whichusedglycol-basedsolvents,ie,ethy-leneglycol(EG),diethyleneglycol(DEG),triethyleneglycol(TEG),tetraethyleneglycol(TTEG),dipropyleneglycol,anddiglycoamine,inacombinedliquid–liquidextractionandextractivedistillationtoextractaromaticsfromwideboilingrangereformates.Next,theShell-developedsulfolaneprocessalsomarketedbyUOP(Fig.4)increasedthearomaticseparationef ciencybyusingthesolventtetrahydrothiophenedioxide(sulfolane)inacombinedliquid–liquidextractionandextractivedistillationtodissolvethesmallerfractionofnonaromaticsinthefeedmixture.
Inthe1960s,theGermanengineeringcompanyKruppKoppersusedN-formylmorpholine(NFM)todeveloptwoprocesses.Inthe rst,morphylexisusedtorecoverallBTXaromaticsfromafeedstocklowinaromaticscontent.Morphylane,ontheotherhand,isanextractivedistillationpro-cessusedfortherecoveryofsinglearomatics,eg,toluene,benzene,fromappropriatefeedstocks.Octenarisamodi edmorphylaneextractivedistilla-tionprocessusedforrecoveringaromaticsfromcatalyticreformates.Alsoin
Fig.4.Shell-UOP’sSulfolaneextractionprocess(35).(CourtesyofGulfPublishingCo.)
Petroleum Technology, Volume 1-2
Vol.2
Extractor
StripperTOLUENE925
regenerator
Fig.5.UnionCarbideCorp.Tetraextractionprocess(36).(CourtesyofGulfPublishingCo.)
the1960s,UnionCarbidedevelopedtheTetraprocess,usingTTEGsolvent(Fig.5).In1986,UnionCarbideintroducedtheCaromprocess.CaromprocessinheriteddesignimprovementsoverUdexandTetraprocessesandusesTTEGcombinedwithaproprietarycosolventthatenhancesthecapacityofthesolventsystem.
SulfolanehasaslightadvantageoverCarominenergyconsumption,whileCaromhas6–8%lesscapitalforthesamecapacitySulfolaneunit.In1995,Exxon(37)commercializedthemostrecenttechnologyforaromaticsrecoverywhenitusedcopolymerhollow- bermembraneinconcentration-drivenpro-cesses,pervaporationandperstraction,foraromatic–paraf nseparation.Oncethenonaromaticparaf nsandcycloparaf nsareremoved,fractionationtosepa-ratetheC6toC9aromaticsisrelativelysimple.
Properchoiceoffeedstocksanduseofrelativelysevereoperatingconditionsinthereformersproducestreamshighenoughintoluenetobedirectlyusableforhydrodemethylationtobenzenewithouttheneedforextraction.
Tolueneisrecoveredfrompyrolysisgasoline,usuallybymixingthepyroly-sisgasolinewithreformateandprocessingthemixtureinatypicalaromaticsextractionunit.Yieldsofpyrolysisgasolineandthetoluenecontentdependonthefeedstocktothesteam-crackingunit,asshowninTable7.Pyrolysisgasolineishydrotreatedtoeliminatedienesandstyrenebeforeprocessingtorecoveraromatics.
4.2.OtherTechnologiesfortheProductionofBTXfromLightHydrocarbons.Recenttechnologicaldevelopmentshavecenteredonhigh
temperaturepyrolysisoflighthydrocarbonsC2toC5,LPG,andnaphthatoformaromaticsinhigheryields.Conversionsweretraditionallylowbecause
Petroleum Technology, Volume 1-2
926TOLUENE
Table7.TolueneContentofPyrolysisGasoline,C5to2008CFeedstockC2–C4paraf nnaphthasgasoils
Wt%topyrolysisgasoline
5–1015–2117–20
Wt%tolueneinpyrolysisgasoline
7–1511–2213–19
Vol.2
theywereaccompaniedbyahighdegreeofdegradationtocarbonandhydro-gen.Recentimprovementsincludemodi cationofthethermalcrackingpro-cesstoproducehigheryieldsofliquidproductsrichinaromaticsandtheextensionofthecatalytichydroformingprocesstopromoteoligomerizationanddehydrocyclizationofthelowerole ns.Thecommoncoreofthesedevelopmentsistheuseofshape-selectivezeolitecatalyststopromotethevariousreactions.OneexampleisthecommercializationoftheAlphaprocessbyAsahiChemicalIndustryCompanyinTokyo,anaf liateofSanyoPetrochemicalCompany.TheAlphaprocessusesmodi edZSM-5typezeolitecatalysttoconvertC3–C8ole nsat4908Ctoaromaticsat5108Cand5kg/cm2pressure(seeMOLECULARSIEVES).Selectivityfortolueneandxylenespeaksat5508Cbutcontinueswithincreasingtemperatureforbenzene.TheCyclarprocess(Fig.6)developedjointlybyBPandUOPusesaspherical,proprietaryzeolitecatalystwithanon-noblemetallicpromotertoconvertC3orC4paraf nstoaromatics.Thedrawbacktotheprocesseconomicsistheproductionoffuelgas,alowvalueby-product.
Fig.6.UOP-BPCyclarprocessforLPGaromatization(38).(CourtesyofChemSys-temsInc.)
Petroleum Technology, Volume 1-2
Vol.2
TOLUENE927
Fig.7.Z-Formingprocess owdiagram(38).(CourtesyofChemSystemsInc.)
BPoperateda1000-bpddemonstrationunitin1989–1991initsre neryatGrangemouth,Scotland.UOPhasagreementwithSaudiBasicIndustriesCorporation(SABIC)touseCyclarprocessinanaromaticsplantatYanbu,SaudiArabia.MitsubishiOilandChiyoda’sZ-formingprocess(Fig.7),whichhasbeenproveninademonstrationunit,shutdowninDecember1991atMitsubishiOil’sKawasakire nery,usesametallosilicatezeolitecatalysttopro-motedehydrogenationofparaf ns,followedbyoligomerizationanddehydrocycli-zationreactions.FeedstockconsistsoflightnaphthaorLPG.TheBTXcomponentoftheproductismostlytoluene.
ExxonMobilhasaprocess(Fig.8)thatusesZSM-5zeolitecatalystwithpalladiumandzincpromoterstooligomerizeC2orC3tocyclohexane,whichinturnisdehydrogenatedtotoluene,benzene,andxylenes.Similarlytothisprocess,theKTI’sPyroformprocess(Fig.9)usesashape-selectivezeolitecatalysttoconvertC2andC3paraf nstoaromatics.Theuniquefeatureofthisprocessisthedesignofproprietaryreactorfurnaceandtheoperatingtemperatureandpressurepro les.IFandSalutearedevelopingtheAroformerprocess(Fig.10)touseC3–C5,LPG,andlightnaphthafeedstocks.Chevron’sAromaxprocess(Fig.11)issimilartoconventionalcatalyticreformingprocess,exceptthatitsfeedstockhashighparaf nicityandithasextrasulfur-removalfacilitiestoavoiddeactivatingitsL-typezeolitecatalyst,whichisverysensi-tivetosulfur.
Table8summarizestheChemSystems’analysisofthecostofproductionofBTXfromthesefeeds,resultinginarecommendationofthebest-suitedtechnol-ogyforeachfeedstock.
Petroleum Technology, Volume 1-2
¼steam.(CourtesyofChem928
)
.cnIsmetsySFig.8.ExxonMobil’sprocessforaromaticsfromethane(38).Ref.¼refrigeration;CW¼coolingwater;Stm.
Petroleum Technology, Volume 1-2
Quench1st Stage2nd Stage3rd Stage929
Fig.9.Inc.)
Pyroformprocess owdiagram(38).Ref.¼refrigeration,CW¼coolingwater,andBFW¼boilingfeedwater.(CourtesyofChemSystems
上一篇:医院门诊优质服务工作措施
下一篇:大工13春《测量学》在线作业3