Type IIB orientifolds with discrete torsion
时间:2025-04-19
时间:2025-04-19
We consider compact four-dimensional ${\bf Z_N}\times {\bf Z_M}$ type IIB orientifolds, for certain values of $N$ and $M$. We allow the additional feature of discrete torsion and discuss the modification of the consistency conditions arising from tadpole c
1
002 ebF 61 3v502101/0ht-pe:hviXraInternationalc
fJournalofModernPhysicsA,WorldScienti cPublishingCompanyTYPEIIBORIENTIFOLDSWITHDISCRETETORSION
ROBERTL.KARP ,F.PAULESPOSITO,LOUISWITTEN
PhysicsDepartment,UniversityofCincinnati
Cincinnati,Ohio45221-0011,USA
Weconsidercompactfour-dimensionalZN×ZMtypeIIBorientifolds,forcertainvaluesofNandM.Weallowtheadditionalfeatureofdiscretetorsionanddiscussthemodi -cationoftheconsistencyconditionsarisingfromtadpolecancellation.Wepointoutthedi erencesbetweenthecaseswithandwithoutdiscretetorsion.
Orientifoldcompacti cations1ofthetypeIIBsuperstringcircumventtheprob-lemthatthetypeItheorydoesnotproduceachiralspectrumwhencompacti edonaCalabi-Yauthreefoldwithstandardembeddingofthegaugedegreesoffree-dom.Independentlyofthisdiscretetorsion(DT)wasintroducedasaphasefactorrelatedtotheB- eld,allowedbymodularinvariance2inorbifoldcompacti cationsoftheclosedstringtheories.IntheopenstringtheoriestheanalogousnotionofDTwasdiscoveredrelativelyrecently,onlyafterD-braneswerebetterunderstood3.InadditiontherelationshipbetweenclosedandopenDThasbeenfurtherclari ed4.ThepioneeringworkforZ2orientifoldswasquicklygeneralizedtoZnfordif-ferentvaluesofn’s5.ThecaseZ2×Z2wasinvestigated6andgeneralized7.ThequestionofnoncompactorientifoldswithDTwasaddressedaswell8.ThegeometricaspectsofDTwaspartlydescribed9andtherehasrecentlybeenarevivalofinterestinthesubject10.
ThecompleteorientifoldgroupweconsiderhereisG1+ G2with h h′∈G1forh,h′∈G2.WerestrictourattentiontoG1=G2=ZN×ZM.Thegeneratorofeitherofthefactorswillhavetheformθ=exp(2iπ(v1J45+v2J67+v3J89)),withJmntheSO(6)Cartangenerators,actingonthecompactT6(complexi ed)coordinatesZ1=X4+iX5,Z2=X6+iX7andZ3=X8+iX9asθZi=e2iπviZi.IfwechosethetwistvectorsoftheZNandZMgeneratorsθandωtobeoftheformvθ=v=1M(0,1, 1),weendupwithN=1d=4supersymmetry.Undoubtedly,therearemanyequallyinterestingchoicesthatdonothavethisform.
Toderivethemasslessspectraweworkinlight-conegauge.TheGSOpro-jecteduntwistedmasslessRamondstates|s0s1s2s3 transformasθ|s0s1s2s3 =e2iπv·s|s0s1s2s3 .
InthispaperwewillbemainlyinterestedintheKleinbottlevacuumtovacuumamplitude;theMobiusstripandthecylinderinfacthavesimilarexpression.The
We consider compact four-dimensional ${\bf Z_N}\times {\bf Z_M}$ type IIB orientifolds, for certain values of $N$ and $M$. We allow the additional feature of discrete torsion and discuss the modification of the consistency conditions arising from tadpole c
2TypeIIBorientifoldswithdiscretetorsion
Kleinbottleamplitudeisgivenby
K=
V4
(4παt)
2′
2
Trh{
1+( 1)F
2t[α2
,xayb
)=
χ(a,b)β]
(N
α,β
2
η α,β
=0
2
,xayb
)=(1
1)χ(a,b)
2
]
(N
2
β+2ui
]
[α
β+2u3]
2
2
+2ui]
( 2sin2πu3)
1
2
1
2+2u3
]
[1
2
1
We consider compact four-dimensional ${\bf Z_N}\times {\bf Z_M}$ type IIB orientifolds, for certain values of $N$ and $M$. We allow the additional feature of discrete torsion and discuss the modification of the consistency conditions arising from tadpole c
TypeIIBorientifoldswithdiscretetorsion3
nonzeroone.InwhatfollowswefocusontheK(y3,xya)=0contributions,whichwillbeproportionalto1/V1,asopposedtotheK(y3,ya)contributionsthatareinfactproportionaltoV1.Wealsohave (y3,xayb)=( 1)a.ItturnsoutthatK(y3,xya)=0fora=0,3,whileforothervaluesofatheyallequalacommon
11
valueproportionalto [] []/ [ ].Inthelimitt→0thetwistedKlein1bottleamplitudeswillgivethecontribution(2t)(64π2α′)/V1withoutDT,andthenegativeofthiswithDT.Similarly,theuntwistedKleinbottlecontributionthatcontributeswithafactorof1/V1turnsouttobeK(1,xya),fora=1,3,4,5.Inthet→0limittheseaddupthecontribution3(2t)(64π2α′)/V1.ThusinthecasewithoutDTwehaveatadpolecontributionproportionalto(2t)(256π2α′)/V1,whichturnsouttorequire32D-branestobecanceled.Thisagreeswiththealreadyknownresult7.Ontheotherhand,forthecasewithDTthetadpolecannotbecanceled,renderingthemodelperturbativelyinconsistent,inthesenseof11.
ThenextinterestingcaseisZ3×Z6.MoregenerallyfornoddtheZn×Z2nDTis (yn,xayb)=e(2πi/n)n( b)=1,andonceagainDThasnoe ect.
TheZ4×Z4modelisinterestingtoanalyzeaswell.Itiswasknown7thatwithoutDTthismodelwasperturbativelyinconsistent.OurhopewasthatDTwouldchangethetadpolecancellationconditions,andallowforaconsistentsolution.Itiselementarytoshowthat (x2,xayb)=1i b=1,3; (x2y2,xayb)=1i a b= 3, 1,1,3,and (y2,xayb)=1i a=1,3.UnfortunatelyitturnsoutthatwiththeseconstraintsK(x2, )=K(x2y2, )=0,andK(y2, )=0,implyingthatevenbyturningonDTwecannotperturbativelysavethemodel.
Acknowledgments
R.L.K.wouldliketothankR.G.Leighforusefulconversations.ThisworkwassupportedinpartbytheDepartmentofEnergyunderthecontractnumberDOE-FGO2-84ER40153.RLKwasalsosupportedinpartbytheNationalScienceFoun-dationgrantDMS-9983320.
Note
Afterthistalkwasgivenanexhaustivetreatmentofthesubjectappeared12thatoverlapspartlywithourresults.
6
6
6
We consider compact four-dimensional ${\bf Z_N}\times {\bf Z_M}$ type IIB orientifolds, for certain values of $N$ and $M$. We allow the additional feature of discrete torsion and discuss the modification of the consistency conditions arising from tadpole c
4TypeIIBorientifoldswithdiscretetorsion
References
1.A.Sagnotti,TalkpresentedattheCargeseSummerInstituteonNon-PerturbativeMethodsinFieldTheory,1987.P.Horava,Nucl.Phys.B327,461(1989).Phys.Lett.B231,251(1989 …… 此处隐藏:4346字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:2011年时事政治试题及答案