PC2010 ABCG transporters, which are required for export of d
发布时间:2024-11-25
发布时间:2024-11-25
ThePlantCell,Vol.22:3066–3075,September2010,http://ã2010AmericanSocietyofPlantBiologists
ArabidopsisABCGTransporters,WhichAreRequiredforExportofDiverseCuticularLipids,DimerizeinDifferentCombinations
HeatherE.McFarlane,aJohnJ.H.Shin,aDavidA.Bird,http://ceySamuelsa,1
aDepartmentbMount
ofBotany,UniversityofBritishColumbia,Vancouver,Canada,V6T1Z4RoyalUniversity,Calgary,Canada,T3E6K6
ATPbindingcassette(ABC)transportersplaydiverseroles,includinglipidtransport,inallkingdoms.ABCGsubfamilytransportersthatareencodedashalf-transportersrequiredimerizationtoformafunctionalABCtransporter.Differentdimercombinationsthatmaytransportdiversesubstrateshavebeenpredictedfrommutantphenotypes.InArabidopsisthaliana,mutantanalyseshaveshownthatABCG11/WBC11andABCG12/CER5arerequiredforlipidexportfromtheepidermistotheprotectivecuticle.TheobjectiveofthisstudywastodeterminewhetherABCG11andABCG12interactwiththemselvesoreachotherusingbimolecular uorescencecomplementation(BiFC)andproteintraf cassaysinvivo.WithBiFC,ABCG11/ABCG12heterodimersandABCG11homodimersweredetected,whileABCG12homodimerswerenot.FluorescentlytaggedABCG11orABCG12waslocalizedinthestemepidermalcellsofabcg11abcg12doublemutants.ABCG11couldtraf ctotheplasmamembraneintheabsenceofABCG12,suggestingthatABCG11iscapableofforming exibledimerpartnerships.Bycontrast,ABCG12wasretainedintheendoplasmicreticulumintheabsenceofABCG11,indicatingthatABCG12isonlycapableofformingadimerwithABCG11inepidermalcells.EmergingthemesinABCGtransporterbiologyarethatsomeABCGproteinsarepromiscuous,havingmultiplepartnerships,whileotherABCGtransportersformobligateheterodimersforspecializedfunctions.
INTRODUCTION
ATPbindingcassette(ABC)transportersareuniversalcompo-nentsofcellsfromallkingdomsandplaydiverseroles,includinglipidtransport.ManyABCtransportersareencodedasfullyfunctionalunits,consistingoftwoATPbindingcassettesandtwotransmembranedomains.ABCGfamilymembersthatareen-codedashalf-transportersmustdimerizetoformafull,functionalABCtransporter.InArabidopsisthaliana,theABCGgenefamilycontains28genesannotatedashalf-transporters(Verrieretal.,2008).ABCGhalf-transportershavebeenimplicatedinthetrans-portofabscisicacid(Kuromorietal.,2010)andexportofkana-mycin(MentewabandStewart,2005),sporopollenin(Quilichinietal.,2010;Xuetal.,2010),andcuticularlipids(Pighinetal.,2004;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Whetherthesehalf-transportersfunctionashomodimersorheterodimersisnotknown.
AmodelofABCGhalf-transportersformingdifferenthetero-dimerstoperformmultiplefunctionshasbeenproposedinothereukaryoticsystems.InDrosophilamelanogaster,WHITE,SCAR-LET,andBROWNgenesareinvolvedineyepigmentaccumu-lationandWHITEisalsoinvolvedincGTPtransport(Sullivanand
correspondencetolsamuels@interchange.ubc.ca.
Theauthorresponsiblefordistributionofmaterialsintegraltothe ndingspresentedinthisarticleinaccordancewiththepolicydescribedintheInstructionsforAuthors(http://)is:http://ceySamuels(lsamuels@interchange.ubc.ca).versioncontainsWeb-onlydata.
http:///cgi/doi/10.1105/tpc.110.077974
1AddressSullivan,1975;Sullivanetal.,1979;Mackenzieetal.,2000;Evansetal.,2008).MutantphenotypeshaveindicatedthatWHITEisrequiredforaccumulationofbothguanine-derived(red)orTrp-derived(brown)eyepigments,astheeyesofwhitemutantslackanypigmentation(Sullivanetal.,1980;Ewartetal.,1994).Similarly,brownandscarletmutantsindicatedthatthesehalf-transportersarerequiredforaccumulationofguanine-derivedorTrp-derivedeyepigments,respectively(Ewartetal.,1994).ThisimpliesthatWHITEandBROWNdimerizetotransportguanine-derivedpigments,whileWHITEandSCARLETdimerizetotransportTrp-derivedpigments.Whetherthesegeneproductsphysicallyinteractinvivoandwhethertheydirectlytransportthesesubstrateshasnotbeentested.
ABCGtransportersinmammalsappeartoformeitherobligateheterodimers,suchastheABCG5/ABCG8,orhomodimers,suchasABCG2(Tarretal.,2009).WhilebothABCG5andABCG8caninteractpromiscuouslywithotherABCGtrans-porterstestedinvitro(Grafetal.,2003),mouseABCG5andABCG8mustdimerizetoexittheendoplasmicreticulum(ER),undergoposttranslationalmodi cationintheGolgi,andtraf ctotheirusualplasmamembranelocation(Grafetal.,2002,2003).IfeitherABCG5orABCG8isexpressedindividually,orifhetero-dimerizationisdisruptedbyapointmutationineithertransporter,bothtransportersareretainedintheERanddegraded,indicatingthatformationoftheABCG5-ABCG8heterodimerisaprerequi-siteforplasmamembranelocalization(Grafetal.,2002,2004).ThesestudiessuggestthatonlyasubsetoftheABCGtrans-porterdimersthatmaybedetectedbyimmunoprecipitationarecapableofexitingtheproteinmaturationmachineryintheERand
thatERexitcanbeusedasanassessmentofthebiologicalrelevanceoffunctionaldimers.
TwoABCGhalf-transporters,ABCG11andABCG12,havebeenimplicatedintheexportoflipidsfromtheepidermistothecuticle,whichsealsandprotectstheaerialtissuesoftheplantbody(Bird,2008).Thecuticleisatoughcross-linkedcutinpolyesterscaffoldcomposedofhydroxy-C16andC18fattyacidsandglycerol(Pollardetal.,2008),surroundedbyandcoveredwithahydrophobicwaxmixturedominatedbyvery-long-chainfattyacidderivatives(Jetteretal.,2006;Samuelsetal.,2008).ABCGhalf-transportersrequiredforaccumulationofbothcutinandwaxatthecellsurfacehavebeenidenti edbymutantanalysisinArabidopsis.abcg11/wbc11/desperado/cof1mutantsdisplayreducedcutinandwaxlevels(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Detailedanalysesofthesechemicalphenotypesrevealedthatallwaxandcutinconstituentsweredecreasedinthesemutants.AssumingthatABCG11candirectlytransportcuticularlipids,thesedataimplythatABCG11hasabroadsubstratespeci cityforavarietyofstructurallydiversecuticularlipids(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).ThecloselyrelatedABCG12/CER5transporterisrequiredforwax(Pighinetal.,2004),butnotcutin,export(Birdetal.,2007).abcg12mutantshaveareductiononlyinwaxcompo-nents,suggestingthatABCG12hasanarrowersubstratespec-i citythanABCG11(Pighinetal.,2004).FluorescentlytaggedABCG11orABCG12islocalizedtotheplasmamembraneandrescuescuticularlipidde cienciesoftheknockoutmutantsinstablytransformedlines(Pighinetal.,2004;Birdetal.,2007).Consistentwitharoleincuticularlipidexport,bothgenesarehighlyexpressedinthestemepidermis,wherewaxandcutinsynthesisandsecretionareextremelyhigh(Pighinetal.,2004;Suhetal.,2005;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).However,ABCG11isalsoexpressedintissuesinwhichcuticularlipidsarenotsynthesized(e.g.,emerginglateralroots),suggestingthatitmayplayrolesbeyondcuticularlipidexport(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Indeed,abcg11mutantsdisplaypleiotropicphenotypes,includingdwar sm,lossofapicaldominance,andsterility,whileabcg12mutantsarephenotypicallynormalexceptfortheirglossystems(Pighinetal.,2004;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Epidermalcellsofbothabcg11andabcg12mutantsaccumulatelipidicinclusions,presumablyduetotheaggregationofwaxmoleculesthataresynthesized,butnotexported,fromthesemutants(Pighinetal.,2004;Birdetal.,2007;Panikashvilietal.,2007).abcg11abcg12doublemutantshavethesamelevelsofresidualwaxaseitherofthesinglemutants,suggestingthatABCG11andABCG12actinthesamepathwayorcomplexincuticularwaxexport(Birdetal.,2007).Basedonthepleiotropicphenotypesofabcg11mutants,wehypothesizedthatdifferentdimerizationcombinationsofABCGtransporterscouldaccountforthemultiplefunctionsoftheABCG11half-transporter(Birdetal.,2007).Inthisstudy,ABCG11/ABCG12heterodimersandABCG11homodimersweredemonstratedusingbimolecular uorescencecomple-mentation(BiFC),whileABCG12homodimerswerenot.Het-erodimerizationbetweenABCG11andABCG12wasfurther
FlexiblePairingofABCGTransporters3067
supportedbythebehavioroftheABCtransportersduringtheirbiosynthesisandsecretioninepidermalcells,whichactivelysynthesizeandsecretecuticularlipids.ThedifferentdimercombinationsdemonstratedbyBiFCcanaccountforthebe-haviorofthesehalf-transportersduringtheirtraf cking.ABCG12wasretainedinlipidicinclusionsintheabsenceofABCG11,andtheseinclusionswerecontiguouswiththeER.Thisstudyem-phasizesthe exibilityofthehalf-transportersystemofABCGtransporters,inwhichspeci cdimercombinationsperformspecializedfunctionsanddifferentcombinationsofABCGtrans-porterscanperformdifferentfunctions.
RESULTS
ABCG11andABCG12FormaHeterodimer,andABCG11CanHomodimerize
GiventhatABCG11andABCG12arebothhalf-transporters(Verrieretal.,2008)andthatthedoublemutantphenotypeindicatedthattheylikelyactinthesamepathwayorcomplexinwaxexport(Birdetal.,2007),theirphysicalinteractionwastestedinvivousingBiFC(Figure1).Thisplant-basedsystemwasusedbecauseithasprovendif cult,bothinourhandsandasdocumentedbyothers(GeislerandMurphy,2006;YangandMurphy,2009),toexpressplantABCtransportersinSaccharo-mycescerevisiae,thuslimitingyeastprotein–proteininteractionstudies.IntheBiFCsystem,enhancedyellow uorescentprotein(EYFP)issplitintotwohalves:N-terminal(nYFP)andC-terminal(cYFP),whicharefusedtotheproteinsofinterest.Cotransfor-mationoftheseconstructsintoatransientexpressionsysteminArabidopsisleafmesophyllprotoplastsallowsreconstitutionofYFPifthetwoproteinsareinclosephysicalproximity,therebyallowingdetectionofYFPsignal(Citovskyetal.,2006).Asigni cantproportionofprotoplastscotransformedwithcYFP-ABCG11andnYFP-ABCG12,orconversely,withcYFP-ABCG12andnYFP-ABCG11,displayedbrightyellow uores-cenceintheplasmamembrane,indicatingthatthesetwoproteinsarecapableofformingaheterodimerinvivo(P<0.05)(Figures1C,1D,and1I;seeSupplementalFigure1online).Thisalsocon rmsthatABCGBiFCconstructswitheithertheC-orN-terminalpiecesofYFParecapableofgeneratingyellow uorescence,regardlessofthecombinationused.
WhencYFP-ABCG11andnYFP-ABCG11werecotrans-formedintoprotoplasts,yellow uorescencewasobservedintheplasmamembraneofasigni cantproportionofthesecells,indicatingthatABCG11canalsohomodimerize(P<0.05)(Figures1A,1B,and1I).Bycontrast,whencYFP-ABCG12andnYFP-ABCG12werecotransformed,onlyasmallproportionofprotoplasts uorescedfaintlywhenimagedunderthesameconditions(Figures1E,1F,and1I;seeSupplementalFigure1online).Todeterminewhetherthissignalwasduetoagenuine,low-levelhomodimerizationofABCG12orwhetheritwasanartifactofcolocalizationoftwohalf-YFPconstructstotheplasmamembrane,eachoftheABCGBiFCconstructswerecotrans-formedwithBiFCconstructsforcomponentsofaplasmamem-brane–localizedrootnitratetransportercomplex(ArabidopsisNRT2.1orNRT3.1)(Yongetal.,2010),whicharenotpredictedto
3068ThePlantCell
Figure1.ABCG11andABCG12HeterodimerizeandABCG11Homo-dimerizesintheBiFCSystem.
Onlyprotoplastswithintactplasmamembranes,shownwithbright- eldlightmicroscopy(A,C,E,G),weretestedforthepresenceofyellow uorescence,indicatingprotein–proteininteractionduetoassemblyofsplitYFP,shownwithconfocalmicroscopy([B],[D],[F],and[H]).CotransformationofcYFP-ABCG11andnYFP-ABCG11intoprotoplastswithintactplasmamembranes(A)generatesyellow uorescence(false-coloredgreen)attheplasmamembrane,surroundingchloroplastauto- uorescence(false-coloredmagenta)inconfocal(B).CotransformationofcYFP-ABCG11andnYFP-ABCG12alsogeneratesyellow uores-cenceattheplasmamembrane([C]and[D]).However,cotransforma-tionofcYFP-ABCG12andnYFP-ABCG12([E]and[F])orcYFP-ABCG11andNRT3.1-nYFP([G]and[H])generatedonlyfaintyellow uorescenceinalowproportionofprotoplasts.Resultswerequanti edasthepercentageof uorescentprotoplasts,relativetothenumberof uores-centprotoplastsinthepositivecontrol(full-lengthYFP)(I).n=8independentexperiments(totalof>1300protoplastsscored),barsrepresentSE,*denotesstatisticallysigni cantdifferencesbetweensamples(P<0.05),andbars=10mm.Allprotoplasts(exceptfortheoverexpressingYFPcontrol)wereimagedatthesameexposuretimeanddetectorgaintoallowforcomparisonsofrelative uorescence.
interactwithABCGtransporters.ProtoplastscotransformedwithNRT2.1-cYFPandeithernYFP-ABCG11ornYFP-ABCG12orwithNRT3.1-nYFPandeithercYFP-ABCG11orcYFP-ABCG12displayedthesamefaint uorescenceascYFP-ABCG12withnYFP-ABCG12(Figures1Eto1I;seeSupplementalFigure1on-line).Theseproportionsof uorescentprotoplastswerenotsigni cantlydifferentfromtheproportionobservedwhenthetwoABCG12constructswerecotransformed(P>0.35).Thus,theselowproportionsoffaintly uorescingprotoplastsarelikely
backgroundsignalduetochanceassociationsbetweenproteinsthatareplasmamembranelocalizedbutdonotlegitimatelyinteract.
ABCG11Traf ckingtothePlasmaMembraneIsIndependentofABCG12
StudiesofABCGhalf-transportersinmammaliancellsindicatethatbothpartnersofaheterodimermustbepresentforthedimertotraf ctotheplasmamembrane(Grafetal.,2003,2004).TotestwhetherABCG11orABCG12cantraf cnormallyonlyinthepresenceoftheirpartnersandtoputtheseinteractionsintothecontextofcuticularlipidsecretionintheepidermis,stablytransformedplantlinesexpressing uorescentlytaggedABCGs(Pighinetal.,2004;Birdetal.,2007)werecrossedintothesingle(abcg11)anddouble(abcg11abcg12)knockoutmutants.YFP-ABCG11successfullytraf ckedtotheplasmamembraneinthepresenceofitswild-typeABCG12partner(i.e.,inthesingleabcg11mutantbackground;Figure2A).PlasmamembranelocalizationofYFP-ABCG11wasvisualizedastwodistinctsignalsfromneighboringcellsliningtheadjacentcellwall,whichwaslabeledwithpropidiumiodide(Figures2Band2C).IntheabsenceofABCG12(inabcg11abcg12doubleknockoutmutantbackground),YFP-ABCG11wasalsolocalizedtotheplasmamembrane(Figure2E),whereitcolocalizedwiththeplasmamembranemarkerFM4-64(Figures2Fand2G).YFP-ABCG11localizationinthedoublemutantbackgroundwascon rmedusingtransmissionelectronmicroscopy(TEM)immunogoldla-belingofcryo- xed,freeze-substitutedstemepidermalcells(Figure2D),probedwithananti-green uorescentprotein(GFP)antibody.Theplasmamembraneofepidermalcellswaslabeledbyanti-GFPintransgenicplantlinescarryingYFP-ABCG11(Figure2H),butnosignalabovebackgroundwasdetectedinwild-typecontrolplantsorinsamplesprobedwithoutaprimaryantibody(seeSupplementalFigure2online).TherewasnoevidenceofpolarlocalizationofYFP-ABCG11instemepidermalcellsusingthishigh-resolutionTEMtechnique,incontrastwithpreviousreportsusingconfocalmicroscopy,wheresignalin-tensitiescanbedistortedbyopticalconditionsordissection(Panikashvilietal.,2007).TheseresultsdemonstratethatABCG11isabletotraf ctotheplasmamembraneevenintheabsenceofABCG12.ThisindicatesthatABCG11mayhetero-dimerizewithotherABCGhalf-transportersthatarepresentinthestemepidermis,suchasABCG18andABCG19(Suhetal.,2005).Alternatively,ABCG11mayformahomodimerinvivo,aninterpretationthatisconsistentwiththeBiFCdata.
ABCG12Traf ckingtothePlasmaMembraneIsDependentonABCG11
IfABCG12formsanobligateheterodimerwithABCG11,thenABCG11ispredictedtoberequiredfornormaltraf cofABCG12totheplasmamembrane.Therefore,GFP-ABCG12waslocal-izedinabcg12andabcg11abcg12mutantstoinvestigateitstraf ckinginthepresenceandabsenceofitsABCG11partner,respectively.Inthesingleabcg12knockoutmutants,GFP-ABCG12signalwasdetectedattheplasmamembrane(Figure3A),adjacenttothecellwall,visualizedwithpropidium
iodide
FlexiblePairingofABCGTransporters3069
Figure2.Traf ckingofABCG11tothePlasmaMembraneIsIndependentofABCG12.
Inabcg11mutants([A]to[C]),YFP-ABCG11islocalizedtotheplasmamembrane(A),asshownbycounterstainingwithpropidiumiodide(B)andmerge(C).TEMofthewild-typestemillustratesepidermalcellmorphology(D).Inabcg11abcg12doublemutants([E]to[H]),YFP-ABCG11isalsolocalizedtotheplasmamembrane(E),whereitcolocalizeswithFM4-64(F)inthemerge(G).TEMimmunogoldlocalizationwithanti-GFPcon rmsYFP-ABCG11localizationtotheplasmamembrane(H).Thewhiteboxin(G)highlightsanareathatisrepresentativeofthe eldofviewin(H).Circleshighlightgoldparticles,andarrowheadsdenotetheplasmamembrane.Bars=10mminconfocalimages([A]to[C]and[E]to[G]),5mmin(D),and200nmin(H).
(Figures3Band3C).ImmunogoldTEMlabelingofthesingleabcg12mutantexpressingtheGFP-ABCG12constructrevealedthatanti-GFPsignalwaspredominantlyattheplasmamem-brane,withlittleintracellularandcellwallbackgroundlabel(Figure3D;seeSupplementalFigure2online).However,intheabcg11abcg12doublemutantbackground,GFP-ABCG12sig-nalwasdetectedinareticulatenetworkresemblingtheERandinlargeaggregationsinthemiddleofthecells(Figure3E).ThissignalhadalowlevelofcolocalizationwithFM4-64(Figures3Fand3G),whichisnotconsistentwithplasmamembranelocal-ization.InTEM,anti-GFPlabelingwasconcentratedinthelargeaggregationsofsheet-likeinclusionsthathavebeendetectedwithinthecytoplasmofabcg11andabcg12mutants(Figure3H;Pighinetal.,2004;Birdetal.,2007;Panikashvilietal.,2007).GFP-ABCG12retentionintheERintheabsenceofABCG11isconsistentwiththepredictionthatABCG12dimerizesonlywithABCG11inthestemepidermalcellsandthat,asinmammals,ABCGhalf-transporterdimerformationisrequiredfortraf ckingtotheplasmamembrane(Grafetal.,2003,2004).
AccumulationofGFP-ABCG12intheabcg11abcg12mutantinclusionscouldbeduetoanonspeci cERstressresponseand/orageneraltraf ckingdefectinabcg11mutants.ImmunogoldTEMlabelingforanotherplasmamembrane–localizedprotein,thePIP2aquaporin(Botsetal.,2005),detectedPIP2intheplasma
membraneofwild-typeandabcg11mutantcells(Figures4Aand4B).However,nolabelingabovebackgroundwasdetectedintheinclusions(Figure4C;seeSupplementalFigure3online).Thiscon rmsthatthefailureofGFP-ABCG12totraf ctotheplasmamembraneinabcg11mutantsisspeci ctoABCG12andthattheinclusionsarenotageneralsinkforplasmamembrane–localizedproteins.Similarly,RT-PCRanalysisofgenestypicallyupregu-latedbytheunfoldedproteinresponse(MartinezandChrispeels,2003;Kamauchietal.,2005)con rmedthatthepresenceofinclusionsdoesnotinducesigni cantunfoldedproteinresponse(seeSupplementalFigure4online).Thesedataagreewitharecentmicroarrayanalysisofgeneexpressionchangesinabcg11mutants(Panikashvilietal.,2010).Therefore,GFP-ABCG12re-tentionininclusionsisnotduetoageneralproteinormembranetraf ckingdefectinabcg11mutants.
MembraneInclusionsinabcg11MutantsAreContiguouswiththeER
BecauseGFP-ABCG12wasretainedintheERandintheinclusionsofabcg11abcg12doublemutants,therelationshipbetweentheseinclusionsandtheERwasinvestigatedfurther.TEMwasusedtoexaminethemorphologyofabcg11stemepidermalcellswhereinclusionsprotrudedintothevacuole
of
3070ThePlantCell
Figure3.Traf ckingofABCG12tothePlasmaMembraneIsDependentonABCG11.
Inabcg12mutants([A]to[D]),GFP-ABCG12islocalizedtotheplasmamembrane(A),asshownbycounterstainingwiththecellwalldyepropidiumiodide(B),merge(C),andTEMimmunogoldlocalizationwithanti-GFP(D).Inabcg11abcg12doublemutants([E]to[H]),GFP-ABCG12isretainedwithintheERandinlipidicinclusionsofthesemutants(E)andfailstocolocalizewiththeplasmamembranedyeFM4-64(F)inthemerge(G).TEMimmunogoldlocalizationwithanti-GFPcon rmsGFP-ABCG12localizationtoinclusions(H).Whiteboxesin(C)and(G)highlightanareathatisrepresentativeofthe eldofviewin(D)and(H),respectively,circleshighlightgoldparticles,andarrowheadsdenotetheplasmamembrane.Bars=10mminconfocalimages([A]to[C]and[E]to[G])and200nminTEM([D]and[H]).
epidermalcells(Figure5A).ERmembranesareoftencloselyassociatedwiththeinclusions,eitherlayeredbetweeninclu-sions,oratthetipsoftheinclusions(Figures5Band5C).Bycontrast,therewasnorelationshipbetweentheGolgiapparatusandtheinclusions(Figure5B).
Tocon rmtheassociationoftheERwiththeinclusions,ERwaspositivelyidenti edwithestablishedmarkersinabcg11mutants.Inwild-typeepidermalcells,theERmarkerGFP-HDEL(Batokoetal.,2000)labeledtheERnetwork,includingthecorticalER(Figure6A).Inabcg11mutantstemepidermalcells,GFP-HDELlabeledlargeaggregationsinthecenterofthesecells,inadditiontothenormalERnetwork(Figure6E).ThispatternisstrikinglysimilartothelipidicinclusionslabeledwithNileReddetectedinabcg12mutants(Pighinetal.,2004).Inabcg11mutants,NileRedstainedasimilarpatterntoGFP-HDEL(Figures6B,6C,6F,and6G),suggestingthattheseERaccu-mulationsarelipidrichandmaybecomposedofcuticularlipidsthataresynthesized,butnotsecreted,inabcg11mutants.
SincetheERwasoftenlayeredbetweeninclusions,thelive-cellimagingwithGFP-HDELmightre ecttrappingofERmembranesbetweeninclusions,ratherthanexpansionoftheERmembranestoforminclusions.Todifferentiatebetweenthesepossibilities,TEMimmunogoldlabelingwasemployed
withanticalreticulin,anestablishedmarkerfortheER(Coughlanetal.,1997).Inwild-typecells,anticalreticulinlabeledtheelectron-lucentERlumen(Figure6D;seeSupplementalFigure5online).Inabcg11mutants,anticalreticulinlabeledbothERlumenandinclusions(Figure6H;seeSupplementalFigure5online).Thiscon rmsthattheinclusionsthemselvescontainbona deERmarkers.Together,thesedatasuggestthatinabcg11mutants,lipidsareretainedininclusionsthatareasso-ciatedwithER-derivedmembranes.DISCUSSION
Speci cdimerpairingsofABCGtransportershavebeenhy-pothesizedtoallowmultiplefunctionsforasinglegeneproductinbothArabidopsiscuticularlipidexportbyABCG11andABCG12(Birdetal.,2007,Bird,2008)andinDrosophilaeyepigmentaccumulationbyWHITE,BROWN,andSCARLET(SullivanandSullivan,1975;Sullivanetal.,1979;Mackenzieetal.,2000;Evansetal.,2008).However,thesedimercombina-tionshavebeenhypothesizedbasedonsequenceanalysisandmutantphenotypesandhavenotbeendirectlytested,untilnow.Here,physicalinteractionsbetweenArabidopsisABCG11andABCG12areexperimentallydemonstratedbyBiFC.BiFC
data
FlexiblePairingofABCGTransporters3071
Figure4.Traf ckingofPIP2tothePlasmaMembraneIsIndependentofABCG11.
Inwild-typestemepidermalcells,thePIP2aquaporinislocalizedtotheplasmamembrane(A).PIP2isalsolocalizedtotheplasmamembraneinabcg11mutants(B)andisnotretainedwithintheabcg11mutantinclusions(C).Circleshighlightgoldparticles,arrowheadsdenotetheplasmamembrane,andbars=200
nm.
indicatewhichpairingsarephysicallypossible,assumingthesegeneproductsareexpressedinthesamecellatthesametime.ToplaceABCGtransporterdimerizationinthecontextoftheepidermalcellduringlipidsecretion,biosynthetictraf cofABCGtransportersfromtheERtotheplasmamembranewasexam-inedinthesecells.Thebehaviorofthesehalf-transportersduringtheirbiosynthesisandtraf ckingareconsistentwiththedifferentdimercombinationsdemonstratedbyBiFC.Theconsistencybetweenthesetwodatasets,togetherwithfunctionaldatadeducedfrommutantphenotypes(Pighinetal.,2004;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007),leadtothemodelsproposedbelowforspeci cdimeriza-tionpairingsofABCGtransportersindiversefunctions.ABCG11UndergoesFlexibleDimerizationandPerformsMultipleFunctions
abcg11mutantsdisplaypleiotropicphenotypes,includingre-ducedsurfacewaxandcutinmonomers,stuntedgrowth,organfusions,reducedfertility,andreducedapicaldominance,indi-catingthatABCG11isinvolvedinprocessesinadditiontowaxexport(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Furthermore,theexpressionpatternofABCG11extendsbeyondthatofABCG12totissuesinwhichneithercutinnorwaxisbeingsynthesized(e.g.,emerginglateralroots)(Suhetal.,2005;Tou ghietal.,2005;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007).Basedonmutantpheno-typesandexpressionpattern,weproposethatABCG11actsasageneralistABCGtransporter,pairingwithdifferenthalf-trans-portersindifferenttissuestotransportstructurallydiversesub-strates.Consistentwiththis,ABCG11wasabletoexittheERandtraf ctotheplasmamembraneindependentlyofABCG12,indicatingthatitcandimerizewithotherABCGhalf-transportersinepidermalcells.Additionally,homodimerizationofABCG11wasdemonstratedinBiFCassays.TheseresultsareconsistentwiththemodelinwhichABCG11homodimerizestoexportcutinprecursorsfromthestemepidermis(Birdetal.,2007).Deter-miningwhetherABCG11functionsincutinexportasahomo-dimerwillrequirefurtherexperiments.Whileanalysisofseveralcutinbiosynthesismutantshasrevealedgenesrequiredfor
cutin
Figure5.MembraneInclusionsinabcg11MutantsAreCloselyAssociatedwiththeER.
Stemepidermalcellsofabcg11mutantsaccumulateinclusionsthatprotrudeintothelargecentralvacuole(A).Theseinclusionsarecloselyassociatedandinterspersedwiththeelectron-lucentER([B]and[C]);however,themorphologyoftheGolgiapparatusseemsunaffected(B).Arrowsin(B)and(C)highlightcloseassociationsbetweenERandinclusions.Bars=5mmin(A),500nmin(B),and200nmin(C).
3072ThePlantCell
Figure6.MembraneInclusionsinabcg11MutantsAreContiguouswiththeER.
Inwild-typestemepidermalcells([A]to[D]),GFP-HDELlabelstheERnetwork(A),andNileRed(alipidicdye)faintlylabelscellularmembranes(B),whichpartiallycolocalizewithGFP-HDELinthemerge(C).TEMimmunogoldlabelingwithanticalreticulincon rmsthepresenceofthisepitopeinthewild-typeelectron-lucentER(D).Inabcg11mutants([E]to[H]),GFP-HDELlabelsthereticulateERnetworkaswellaslargeaggregationsinthecenterofthecells(E).NileRedsignalindicatesthattheseinclusionsarelipidic(F),andGFP-HDELandNileRedoverlapininclusionsinthemerge(G).TEMimmunogoldlabelingwithanticalreticulinshowsanaccumulationofthisERepitopeininclusions(H).Whiteboxesin(C)and(G)highlightanareathatisrepresentativeofthe eldofviewin(D)and(H),respectively,andcircleshighlightgoldparticles.Bars=10mminconfocalimages([A]to[C]and[E]to[G])and200nminTEM([D]and[H]).
monomerbiosynthesisandassembly,thenatureofcutinpre-cursorsthatareexportedforassemblyinthecuticleisnotknown(Pollardetal.,2008).Thisgapinourunderstanding,aswellastheproblemthatwaxconstituentsaresolidatbiologicallyrelevanttemperatures,makesassessmentofthepossiblesubstratesofABCG11challenging.BothBiFCandtraf ckingdatademon-stratethatABCG11iscapableofpromiscuouspairingwithmultipleABCGhalf-transporters.ItispossiblethatABCG11dimerizeswithmultiplepartnerstoformavarietyoffulltrans-porterstoperformdiversefunctions,ashasbeenhypothesizedintheDrosophilaWHITE/BROWN/SCARLETmodel.Indeed,ABCG11hasbeenimplicatedinfunctionsasdiverseasmain-tenanceofapicaldominance, owerdevelopment,embryogen-esis,androotsuberinexport(Panikashvilietal.,2010).Thisgivesrisetoamodelinwhichthepleiotropiceffectsofabcg11mutationareduetothelossofthisvarietyoffulltransporters.ABCG12Speci callyFormsHeterodimerswithABCG11forWaxExport
IncontrastwiththebroadexpressionpatternofABCG11andthepleiotropicphenotypesofabcg11mutants,mutantsinabcg12displayonlywax-relatedphenotypes,andexpressionofABCG12isenrichedinthestemepidermiswherewaxisactivelybeingsynthesizedandsecreted(Pighinetal.,2004;Suhetal.,2005;Tou ghietal.,2005).ThereisaprecedentforstrictABCGheterodimerizationinMedicagotruncatulaarbuscularmycorrhi-zalsymbiosis(Zhangetal.,2010).Duringarbusculeformation,twoABCGhalf-transportergenes,STUNTEDARBUSCULE(STR)andSTR2,arehighlyexpressed.STRandSTR2hetero-dimerizeandareincapableofforminghomodimers.Theiriden-ticalmutantphenotypesandexpressionpatternssuggestthat,likeABCG12,thesetwoABCGhalf-transportersarespecialists(Zhangetal.,2010).ConsistentwiththehypothesisthatABCG12isaspecialist,GFP-ABCG12wasonlyabletoexittheERandmovetotheplasmamembraneofepidermalcellsinthepresenceofABCG11,indicatingthatABCG12formsanobligatehetero-dimerwithABCG11instemepidermalcells.ThisissupportedbytheBiFCinteractiondata,whichindicatethatABCG12canheterodimerizewithABCG11butisincapableofformingahomodimer.Therefore,thewaxphenotypesoftheabcg11andabcg12singlemutantsandtheabcg11abcg12doublemutantsarearesultofdefectsinthis
heterodimer.
WaxesThatAreNotExportedinABCGMutantsAccumulateinER-DerivedInclusions
Inabcg11orabcg12mutants,membranouslipidicinclusionsaccumulateintheepidermalcells(Pighinetal.,2004;Birdetal.,2007;Panikashvilietal.,2007).Here,wedemonstratethattheinclusionsinabcg11mutantscontainmarkersoftheERbutnotmarkersoftheplasmamembrane.ItispossiblethatERexpan-sionisastressresponsetosequesterinsolublecuticularlipids.Similarly,inyeast,theERincreasesinsizetoaccommodatedefectiveproteins,independentoftheunfoldedproteinre-sponse(Schucketal.,2009).Alternatively,theinclusionscouldre ectthenatureoflipidtraf cduringcuticularlipidsecretion.Alloftheenzymesthathavebeencharacterizedinwaxsyn-thesishavebeenlocalizedtotheERmembranes(Zhengetal.,2005;Greeretal.,2007;Bachetal.,2008;Lietal.,2008).Ifintermediatesecretorycompartments,suchastheGolgiapparatus,arerequiredforwaxsecretiontothecellsurface,thenwaxaccumulationinthesecompartmentswouldbeex-pectedtooccurwhentransportisblocked.However,GolgiandplasmamembranemorphologyappearedunaffectedinTEMofabcg11knockoutmutants.Whilethesubcellularcom-partmentsinvolvedinwaxsecretionarenotknown,accumu-lationofwaxesonlyintheERisconsistentwithwaxmovingdirectlyfromtheERtotheplasmamembranevianonvesicularlipidtraf c,byanalogytoyeastlipidtransportsystems(LevineandLoewen,2006).
Insummary,ArabidopsisABCG11iscapableof exibledi-merizationtoformeitheraheterodimerorahomodimerattheplasmamembraneinvivo.Bycontrast,ABCG12formsanobligateheterodimerwithABCG11,andheterodimerizationisrequiredfornormaltraf ckingtotheplasmamembrane.BasedonthesedataandonpreviousABCGstudies,therearetwoemergingparadigms: exiblepairingofoneABCGgeneproductwithmultiplepartnerstoperformdiversefunctionsandformationofobligateABCGheterodimersforspecializedfunctions.TheseparadigmshavebeenformerlydeducedbutnotexperimentallytestedinthecanonicalWHITE/BROWN/SCARLETcomplexinDrosophila.Inmammaliancells,casesofbiologicallyrelevant exibleABCGtransporterpartneringhavenotbeendescribed,althoughseverallinesofevidencehintthatthisispossible(Grafetal.,2002;Cserepesetal.,2004).ThisstudydemonstratesthatmechanismsofABCGtran-sporterdimerizationareconservedacrossbiologicalkingdoms,despitethedivergentfunctionalrolesplayedbythesetrans-porters.
METHODSPlantMaterial
SeedlingsweresownonATmediaandgrowninanenvironmentalgrowthchamberat218C,70to80%humidity,and24hlight(80to100mEm22s21)forroughly10dbeforetransfertoSunshineMix5soil.Thecer5-2,wbc11-3,cer5-2+CER5pro:GFP-CER5,andwbc11-3+35Spro:YFP-WBC11lines(allintheColumbia-0[Col-0]background)havebeenpreviouslydescribed(Pighinetal.,2004;Birdetal.,2007),andCol-0seedscarryingthe35Spro:GFP-HDELERmarkerwereagenerousgiftfromHugoZheng(Batokoetal.,2000).
FlexiblePairingofABCGTransporters3073
BiFCTransgeneConstructionandProtoplastTransformationABCG12cDNAwasampli edfromtheGFP:CER5vector(Pighinetal.,2004),andXmaIandEcoRIsiteswereaddedusingtheprimersABCG12.P3andABCG12.P4(seeSupplementalTable1online).ABCG11cDNAwasampli edfromYFP:WBC11(Birdetal.,2007),andXmaIandEcoRIsiteswereaddedusingtheprimersABCG11.P3andABCG11.P4(seeSupplementalFigure6online).TheresultingproductswereligatedintotheEcoRIandXmaIsitesofpSAT4-cEYFP-C1-BandpSAT4-nEYFP-C1(Citovskyetal.,2006)andveri edbysequencing.ControlBiFCvectorscontainingcomponentsoftheArabidopsisthaliananitratetransportmachinerywereagenerousgiftfromZ.KoturandA.Glass(Yongetal.,2010).PlasmidDNAwaspuri edfromEscherichiacoliculturesusinganendotoxin-freeplasmidmaxiprepkit(Qiagen).ProtoplastsfromCol-0leaveswerepreparedandtransformedasdescribed(Tiwarietal.,2006)with10mgofeachvectorusedineachprotoplasttransformation.Thenumberof uorescentprotoplastswasscoredoutofthetotalnumberofliveprotoplasts(i.e.,thosewithanintactplasmamembranewhenviewedwithbright- eldmicroscopy)andpresentedasapercentagerelativetothenumberof uorescentprotoplastsinthepositivecontrol(pSAT6+35Spro:EYFP)asanestimationoftransformationef ciency.Datafromconversetransformations(e.g.,cYFP-ABCG11+nYFP-ABCG12andcYFP-ABCG12+nYFP-ABCG11)weregrouped.Tomeettheassump-tionsofanalysisofvariance(WhitlockandSchluter,2009),datafromeightindependentexperimentswerenaturallog(ln)transformedandcorrectedforvariationsintransformationef ciencyamongexperimentsbysub-tractingthemeantransformationef ciencyofthatexperimentfromeachvalue.MeanswerecomparedusinganalysisofvarianceandaTukeypost-hoctestusingSPSS(IBM).ConfocalMicroscopy
TransformedprotoplastsweremountedinWIsolution,ordissectedstemsegmentsfromthetop3cmfromtheshootapicalmeristem(wherecuticlesynthesisandsecretionisthehighest;Suhetal.,2005)weremountedindistilledwaterandimmediatelyimaged.Stemsegmentswerestainedwith1mg/mLpropidiumiodide(Sigma-Aldrich)or10mMFM4-64(MolecularProbes)for10min.ImageswerecollectedusingaZeiss510MetascanheadonaZeissAxiovert200MwithaZeissAxioCamHRmCCDcameraorusingaQuorumWaveFXspinning-diskscanheadonaLeicaDMI6000microscopewithaHamamatsuImagEMCCDcamera.OntheZeissmicroscope,GFPwasdetectedusinga488-nmlaserwitha505-to530-nm lter,YFPwasdetectedusinga514-nmlaserwitha535-to580-nm lter,andpropidiumiodideandFM4-64weredetectedusinga514-nmlaserwitha600-to650-nm lter.OntheQuorumsystem,GFPandYFPweredetectedusinga491-nmlaserwitha528-to566-nm lter.ToallowcomparisonoftherelativebrightnessbetweendifferentBiFCtreatments,allprotoplasts(excepttheYFPoverexpressingpositivecontrol)wereimagedunderidenticalconditions,includingdetectorgainandexposuretime.ImageswereprocessedusingVolocity(Improvision)orImageJ,andAdobeIllustrator.
High-PressureFreezing,TEM,andImmunogoldLabeling
Stemtissuefromthetop1to3cmfromtheshootapicalmeristemwasfrozenin0.2MsucroseinBsampleholders(TedPella)usingaLeicaHPM-100high-pressurefreezer.Freezesubstitution,resinin ltration,sectioning,poststaining,andimagingwereperformedasdescribed(McFarlaneetal.,2008).Immunolabelingofhigh-pressurefrozenmaterialwasperformedasdescribed(McFarlaneetal.,2008).Primaryantibodieswere1/50polyclonalanti-GFP(A6455fromMolecularProbes);1/20polyclonalanti-calreticulin,generatedagainstcalreticulinfromcastorbean(RicinuscommuniscvHale),agenerousgiftfromSeanCoughlan(Coughlanetal.,1997);and1/50polyclonalanti-PIP2,generatedagainst
3074ThePlantCell
PIP2fromtobacco(NicotianatabacumcvPetitHavanaSR1),agenerousgiftfromRalfKaldenhoff,(Botsetal.,2005).Secondaryantibodywas1/10010nmgold-conjugatedgoat-anti-rabbit(TedPella).ImageswereprocessedusingImageJandAdobeIllustrator.GeneExpressionAnalysis
TotalRNAwasextractedusingTRIzolreagent(Invitrogen)fromstemsegments1to3cmfromtheshootapicalmeristemorfrom10-d-oldseedlingsgrowninliquidATmediaplus1%sucrose,withandwithout5mMDTT(aspositiveandnegativecontrolsfortheunfoldedproteinresponse,respectively).cDNAwassynthesizedfrom15mgofRNAusinganoligodT18primerandSuperScriptIIIreversetranscriptase(Invitrogen).RT-PCRwasperformedfor20cyclesusing1mLofcDNAwithintron- anking,gene-speci cprimersforHSP90.7,BiP1/BiP2(notspeci ctoeithergenealone,sincetheseare97%identical),CALNEXIN1,CALRE-TICULIN2,andPDI-LIKE9(seeSupplementalTable1online).cDNAlevelswerenormalizedusingprimersfortheUBC10ubiquitinconjugatingenzymegenefor20cycles.PCRproductswerevisualizedusingSYBR-Safe(Invitrogen).
AccessionNumbers
SequencedatafromthisarticlecanbefoundintheArabidopsisGenomeInitiativeorGenBank/EMBLdatabasesunderthefollowingaccessionnumbers:At1g17840(ABCG11),At1g51500(ABCG12),At5g53300(UBC10),At4g24190(HSP90.7),At5g28540(BiP1),At5g42020(BiP2),At5g61790(Calnexin1),At1g09210(Calreticulin2),andAt2g32920(PDI-like9).
SupplementalData
Thefollowingmaterialsareavailableintheonlineversionofthisarticle.SupplementalFigure1.ControlsforBiFCProtein–ProteinInteractionAssay.
SupplementalFigure2.ControlsforAnti-GFPImmunogoldTEM.SupplementalFigure3.ControlsforAnti-PIP2ImmunogoldTEM.SupplementalFigure4.TheUnfoldedProteinResponseIsNotSigni cantlyUpregulatedinabcg11MutantswithInclusions.SupplementalFigure5.ControlsforAnticalreticulinImmunogoldTEM.
SupplementalTable1.AListofPrimersEmployedinThisStudy.
ACKNOWLEDGMENTS
WethanktheABRCforprovidingseedstocksandBiFCvectors,SeanCoughlanforanticalreticulin,RalfKaldenhoffforanti-PIP2,ZoricaKoturforthenitratetransporterBiFCconstructs,HugoZhengfortheGFP-HDELconstruct,theUniversityofBritishColumbiaBioimagingFacilityfortechnicalassistance,andLjerkaKunst,MathiasSchuetz,andTeagenQuilichiniforhelpfuldiscussionsandcommentsonthemanu-script.ThisworkwasfundedbyCanadianNaturalSciencesandEngineeringResearchCouncilDiscoveryGrantstoD.A.B.andA.L.S.andbyaCanadaGraduateScholarship-D3toH.E.M.
ReceivedJuly5,2010;revisedAugust27,2010;acceptedSeptember3,2010;publishedSeptember24,2010.
REFERENCES
Bach,L.,etal.(2008)http://A105:14727–14731.
Batoko,H.,Zheng,H.Q.,Hawes,C.,andMoore,I.(2000).RAB1GTPaseisrequiredfortransportbetweentheendoplasmicreticulumandGolgiapparatusandfornormalGolgimovementinplants.PlantCell12:2201–2218.
Bird,D.,Beisson,F.,Brigham,A.,Shin,J.,Greer,S.,Jetter,R.,Kunst,L.,Wu,X.,Yephremov,A.,andSamuels,L.(2007).Charac-terizationofArabidopsisABCG11/WBC11,anATPbindingcassette(ABC)transporterthatisrequiredforcuticularlipidsecretion.PlantJ.52:485–498.
Bird,D.A.(2008).TheroleofABCtransportersincuticularlipidsecretion.PlantSci.174:563–569.
Bots,M.,Feron,R.,Uehlein,N.,Weterings,K.,Kaldenhoff,R.,andMariani,T.(2005).PIP1andPIP2aquaporinsaredifferentiallyex-pressedduringtobaccoantherandstigmadevelopment.J.Exp.Bot.56:113–121.
Citovsky,V.,Lee,L.Y.,Vyas,S.,Glick,E.,Chen,M.H.,Vainstein,A.,Gafni,Y.,Gelvin,S.B.,andTz ra,T.(2006).Subcellularlocalizationofinteractingproteinsbybimolecular uorescencecomplementationinplanta.J.Mol.Biol.362:1120–1131.
Coughlan,S.J.,Hastings,C.,andWinfrey,R.,Jr.(1997).CloningandcharacterizationofthecalreticulingenefromRicinuscommunisL.PlantMol.Biol.34:897–911.
Cserepes,J.,Szentpe
´tery,Z.,Seres,L.,Ozvegy-Laczka,C.,Langmann,T.,Schmitz,G.,Glavinas,H.,Klein,I.,Homolya,L.,Va
´radi,A.,Sarkadi,B.,andElkind,N.B.(2004).Functionalexpres-sionandcharacterizationofthehumanABCG1andABCG4pro-teins:http://mun.320:860–867.
Evans,J.M.,Day,J.P.,Cabrero,P.,Dow,J.A.T.,andDavies,S.A.(2008).Anewroleforaclassicalgene:WhitetransportscyclicGMP.J.Exp.Biol.211:890–899.
Ewart,G.D.,Cannell,D.,Cox,G.B.,andHowells,A.J.(1994).Muta-tionalanalysisofthetraf cATPase(ABC)transportersinvolvedinuptakeofeyepigmentprecursorsinDrosophilamelanogaster.Impli-cationsforstructure-functionrelationships.J.Biol.Chem.269:10370–10377.
Geisler,M.,andMurphy,A.S.(2006).TheABCofauxintransport:Theroleofp-glycoproteinsinplantdevelopment.FEBSLett.580:1094–1102.
Graf,G.A.,Cohen,J.C.,andHobbs,H.H.(2004).MissensemutationsinABCG5andABCG8disruptheterodimerizationandtraf cking.J.Biol.Chem.279:24881–24888.
Graf,G.A.,Li,W.P.,Gerard,R.D.,Gelissen,I.,White,A.,Cohen,J.C.,andHobbs,H.H.(2002).CoexpressionofATP-bindingcassetteproteinsABCG5andABCG8permitstheirtransporttotheapicalsurface.J.Clin.Invest.110:659–669.
Graf,G.A.,Yu,L.,Li,W.P.,Gerard,R.,Tuma,P.L.,Cohen,J.C.,andHobbs,H.H.(2003).ABCG5andABCG8areobligateheterodimersforproteintraf ckingandbiliarycholesterolexcretion.J.Biol.Chem.278:48275–48282.
Greer,S.,Wen,M.,Bird,D.,Wu,X.,Samuels,L.,Kunst,L.,andJetter,R.(2007).ThecytochromeP450enzymeCYP96A15isthemidchainalkanehydroxylaseresponsibleforformationofsecondaryalcoholsandketonesinstemcuticularwaxofArabidopsis.PlantPhysiol.145:653–667.
Jetter,R.,Kunst,L.,andSamuels,L.(2006).Compositionofplantcuticularwaxes.InBiologyofthePlantCuticle,M.RiedererandC.Muller,eds(Oxford,UK:BlackwellPublishers),pp.145–181.
Kamauchi,S.,Nakatani,H.,Nakano,C.,andUrade,R.(2005).GeneexpressioninresponsetoendoplasmicreticulumstressinArabidop-sisthaliana.FEBSJ.272:3461–3476.
Kuromori,T.,Miyaji,T.,Yabuuchi,H.,Shimizu,H.,Sugimoto,E.,Kamiya,A.,Moriyama,Y.,andShinozaki,K.(2010)http://A107:2361–2366.
Levine,T.,andLoewen,C.(2006).Inter-organellemembranecontactsites:Throughaglass,darkly.Curr.Opin.CellBiol.18:371–378.Li,F.,Wu,X.,Lam,P.,Bird,D.,Zheng,H.,Samuels,L.,Jetter,R.,andKunst,L.(2008).Identi cationofthewaxestersynthase/acyl-coenzymeA:diacylglycerolacyltransferaseWSD1requiredforstemwaxesterbiosynthesisinArabidopsis.PlantPhysiol.148:97–107.
Luo,B.,Xue,X.Y.,Hu,W.L.,Wang,L.J.,andChen,X.Y.(2007).AnABCtransportergeneofArabidopsisthaliana,AtWBC11,isinvolvedincuticledevelopmentandpreventionoforganfusion.PlantCellPhysiol.48:1790–1802.
Mackenzie,S.M.,Howells,A.J.,Cox,G.B.,andEwart,G.D.(2000).Sub-cellularlocalisationofthewhite/scarletABCtransportertopig-mentgranulemembraneswithinthecompoundeyeofDrosophilamelanogaster.Genetica108:239–252.
Mart
´nez,I.M.,andChrispeels,M.J.(2003).GenomicanalysisoftheunfoldedproteinresponseinArabidopsisshowsitsconnectiontoimportantcellularprocesses.PlantCell15:561–576.
McFarlane,H.E.,Young,R.E.,Wasteneys,G.O.,andSamuels,A.L.(2008).CorticalmicrotubulesmarkthemucilagesecretiondomainoftheplasmamembraneinArabidopsisseedcoatcells.Planta227:1363–1375.
Mentewab,A.,andStewart,C.N.,Jr.(2005).OverexpressionofanArabidopsisthalianaABCtransporterconferskanamycinresistancetotransgenicplants.Nat.Biotechnol.23:1177–1180.
Panikashvili,D.,Savaldi-Goldstein,S.,Mandel,T.,Yifhar,T.,Franke,
R.B.,Ho
¨fer,R.,Schreiber,L.,Chory,J.,andAharoni,A.(2007).TheArabidopsisDESPERADO/AtWBC11transporterisrequiredforcutinandwaxsecretion.PlantPhysiol.145:1345–1360.
Panikashvili,D.,Shi,J.X.,Bocobza,S.,Franke,R.B.,Schreiber,L.,andAharoni,A.(2010).TheArabidopsisDSO/ABCG11transporteraffectscutinmetabolisminreproductiveorgansandsuberininroots.Mol.Plant3:563–575.
Pighin,J.A.,Zheng,H.,Balakshin,L.J.,Goodman,I.P.,Western,T.L.,Jetter,R.,Kunst,L.,andSamuels,A.L.(2004).PlantcuticularlipidexportrequiresanABCtransporter.Science306:702–704.
PollardM.,BeissonF.,LiY.,andOhlroggeJ.B.(2008).Buildinglipidbarriers:Biosynthesisofcutinandsuberin.TrendsPlantSci.13:236–246.
QuilichiniT.D.,Friedmann,M.,Samuels,A.L.,andDouglas,C.J.(2010).ATP-bindingcassettetransporterG26(ABCG26)isrequiredformalefertilityandpollenexineformationinArabidopsis.PlantPhysiol.,inpress.
Samuels,L.,Kunst,L.,andJetter,R.(2008).Sealingplantsurfaces:FlexiblePairingofABCGTransporters3075
Cuticularwaxformationbyepidermalcells.Annu.Rev.PlantBiol.59:683–707.
Schuck,S.,Prinz,W.A.,Thorn,K.S.,Voss,C.,andWalter,P.(2009).Membraneexpansionalleviatesendoplasmicreticulumstressinde-pendentlyoftheunfoldedproteinresponse.J.CellBiol.187:525–536.Suh,M.C.,Samuels,A.L.,Jetter,R.,Kunst,L.,Pollard,M.,Ohlrogge,J.,andBeisson,F.(2005).Cuticularlipidcomposition,surfacestructure,andgeneexpressioninArabidopsisstemepidermis.PlantPhysiol.139:1649–1665.
Sullivan,D.T.,Bell,L.A.,Paton,D.R.,andSullivan,M.C.(1979).Purinetransportbymalpighiantubulesofpteridine-de cienteyecolormu-tantsofDrosophilamelanogaster.Biochem.Genet.17:565–573.Sullivan,D.T.,Bell,L.A.,Paton,D.R.,andSullivan,M.C.(1980).GeneticandfunctionalanalysisoftryptophantransportinMalpighiantubulesofDrosophila.Biochem.Genet.18:1109–1130.
Sullivan,D.T.,andSullivan,M.C.(1975).TransportdefectsasthephysiologicalbasisforeyecolormutantsofDrosophilamelanogaster.Biochem.Genet.13:603–613.
Tarr,P.T.,Tarling,E.J.,Bojanic,D.D.,Edwards,P.A.,andBalda
´n,A´.(2009).EmergingnewparadigmsforABCGtransporters.Biochim.Biophys.Acta1791:584–593.
Tiwari,S.,Wang,S.,Hagen,G.,andGuilfoyle,T.J.(2006).Transfec-tionassayswithprotoplastscontainingintegratedreportergenes.MethodsMol.Biol.323:237–244.
Tou ghi,K.,Brady,S.M.,Austin,R.,Ly,E.,andProvart,N.J.(2005).TheBotanyArrayResource:e-Northerns,expressionangling,andpromoteranalyses.PlantJ.43:153–163.
Ukitsu,H.,etal.(2007).CytologicalandbiochemicalanalysisofCOF1,anArabidopsismutantofanABCtransportergene.PlantCellPhysiol.48:1524–1533.
Verrier,P.J.,etal.(2008).PlantABCproteins:Auni ednomenclatureandupdatedinventory.TrendsPlantSci.13:151–159.
Whitlock,M.,andSchluter,D.(2009).TheAnalysisofBiologicalData.(GreenwoodVillage,CO:RobertsandCo.Publishers).
Xu,J.,Yang,C.,Yuan,Z.,Zhang,D.,Gondwe,M.Y.,Ding,Z.,Liang,W.,Zhang,D.,andWilson,Z.A.(2010).TheABORTEDMICRO-SPORESregulatorynetworkisrequiredforpostmeioticmalerepro-ductivedevelopmentinArabidopsisthaliana.PlantCell22:91–107.Yang,H.,andMurphy,A.S.(2009).Functionalexpressionandchar-acterizationofArabidopsisABCB,AUX1andPINauxintransportersinSchizosaccharomycespombe.PlantJ.59:179–191.
Yong,Z.,Kotur,Z.,andGlass,A.D.(2010).Characterizationofanintacttwo-componenthigh-af nitynitratetransporterfromArabidop-sisroots.PlantJ.63:739–748.
Zhang,Q.,Blaylock,L.A.,andHarrison,M.J.(2010).TwoMedicagotruncatulahalf-ABCtransportersareessentialforarbusculedevelop-mentinarbuscularmycorrhizalsymbiosis.PlantCell22:1483–1497.Zheng,H.,Rowland,O.,andKunst,L.(2005).DisruptionsoftheArabidopsisEnoyl-CoAreductasegenerevealanessentialroleforvery-long-chainfattyacidsynthesisincellexpansionduringplantmorphogenesis.PlantCell17:1467–1481.
Arabidopsis ABCG Transporters, Which Are Required for Export of Diverse Cuticular Lipids,
Dimerize in Different Combinations
Heather E. McFarlane, John J.H. Shin, David A. Bird and A. Lacey Samuels PLANT CELL 2010;22;3066-3075; originally published online Sep 24, 2010;
DOI: 10.1105/tpc.110.077974
This information is current as of February 13, 2011
Supplemental Data References Permissions eTOCs
CiteTrack Alerts Subscription Information
http:///cgi/content/full/tpc.110.077974/DC1 This article cites 44 articles, 21 of which you can access for free at: http:///cgi/content/full/22/9/3066#BIBL
https://http:///ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
Sign up for eTOCs for THE PLANT CELL at: http:///subscriptions/etoc.shtml Sign up for CiteTrack Alerts for Plant Cell at: http:///cgi/alerts/ctmain
Subscription information for The Plant Cell and Plant Physiology is available at: http:///publications/subscriptions.cfm
© American Society of Plant Biologists
ADVANCING THE SCIENCE OF PLANT BIOLOGY
下一篇:1月《不老泉》读书交流