PC2010 ABCG transporters, which are required for export of d

发布时间:2024-11-25

ThePlantCell,Vol.22:3066–3075,September2010,http://ã2010AmericanSocietyofPlantBiologists

ArabidopsisABCGTransporters,WhichAreRequiredforExportofDiverseCuticularLipids,DimerizeinDifferentCombinations

HeatherE.McFarlane,aJohnJ.H.Shin,aDavidA.Bird,http://ceySamuelsa,1

aDepartmentbMount

ofBotany,UniversityofBritishColumbia,Vancouver,Canada,V6T1Z4RoyalUniversity,Calgary,Canada,T3E6K6

ATPbindingcassette(ABC)transportersplaydiverseroles,includinglipidtransport,inallkingdoms.ABCGsubfamilytransportersthatareencodedashalf-transportersrequiredimerizationtoformafunctionalABCtransporter.Differentdimercombinationsthatmaytransportdiversesubstrateshavebeenpredictedfrommutantphenotypes.InArabidopsisthaliana,mutantanalyseshaveshownthatABCG11/WBC11andABCG12/CER5arerequiredforlipidexportfromtheepidermistotheprotectivecuticle.TheobjectiveofthisstudywastodeterminewhetherABCG11andABCG12interactwiththemselvesoreachotherusingbimolecular uorescencecomplementation(BiFC)andproteintraf cassaysinvivo.WithBiFC,ABCG11/ABCG12heterodimersandABCG11homodimersweredetected,whileABCG12homodimerswerenot.FluorescentlytaggedABCG11orABCG12waslocalizedinthestemepidermalcellsofabcg11abcg12doublemutants.ABCG11couldtraf ctotheplasmamembraneintheabsenceofABCG12,suggestingthatABCG11iscapableofforming exibledimerpartnerships.Bycontrast,ABCG12wasretainedintheendoplasmicreticulumintheabsenceofABCG11,indicatingthatABCG12isonlycapableofformingadimerwithABCG11inepidermalcells.EmergingthemesinABCGtransporterbiologyarethatsomeABCGproteinsarepromiscuous,havingmultiplepartnerships,whileotherABCGtransportersformobligateheterodimersforspecializedfunctions.

INTRODUCTION

ATPbindingcassette(ABC)transportersareuniversalcompo-nentsofcellsfromallkingdomsandplaydiverseroles,includinglipidtransport.ManyABCtransportersareencodedasfullyfunctionalunits,consistingoftwoATPbindingcassettesandtwotransmembranedomains.ABCGfamilymembersthatareen-codedashalf-transportersmustdimerizetoformafull,functionalABCtransporter.InArabidopsisthaliana,theABCGgenefamilycontains28genesannotatedashalf-transporters(Verrieretal.,2008).ABCGhalf-transportershavebeenimplicatedinthetrans-portofabscisicacid(Kuromorietal.,2010)andexportofkana-mycin(MentewabandStewart,2005),sporopollenin(Quilichinietal.,2010;Xuetal.,2010),andcuticularlipids(Pighinetal.,2004;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Whetherthesehalf-transportersfunctionashomodimersorheterodimersisnotknown.

AmodelofABCGhalf-transportersformingdifferenthetero-dimerstoperformmultiplefunctionshasbeenproposedinothereukaryoticsystems.InDrosophilamelanogaster,WHITE,SCAR-LET,andBROWNgenesareinvolvedineyepigmentaccumu-lationandWHITEisalsoinvolvedincGTPtransport(Sullivanand

correspondencetolsamuels@interchange.ubc.ca.

Theauthorresponsiblefordistributionofmaterialsintegraltothe ndingspresentedinthisarticleinaccordancewiththepolicydescribedintheInstructionsforAuthors(http://)is:http://ceySamuels(lsamuels@interchange.ubc.ca).versioncontainsWeb-onlydata.

http:///cgi/doi/10.1105/tpc.110.077974

1AddressSullivan,1975;Sullivanetal.,1979;Mackenzieetal.,2000;Evansetal.,2008).MutantphenotypeshaveindicatedthatWHITEisrequiredforaccumulationofbothguanine-derived(red)orTrp-derived(brown)eyepigments,astheeyesofwhitemutantslackanypigmentation(Sullivanetal.,1980;Ewartetal.,1994).Similarly,brownandscarletmutantsindicatedthatthesehalf-transportersarerequiredforaccumulationofguanine-derivedorTrp-derivedeyepigments,respectively(Ewartetal.,1994).ThisimpliesthatWHITEandBROWNdimerizetotransportguanine-derivedpigments,whileWHITEandSCARLETdimerizetotransportTrp-derivedpigments.Whetherthesegeneproductsphysicallyinteractinvivoandwhethertheydirectlytransportthesesubstrateshasnotbeentested.

ABCGtransportersinmammalsappeartoformeitherobligateheterodimers,suchastheABCG5/ABCG8,orhomodimers,suchasABCG2(Tarretal.,2009).WhilebothABCG5andABCG8caninteractpromiscuouslywithotherABCGtrans-porterstestedinvitro(Grafetal.,2003),mouseABCG5andABCG8mustdimerizetoexittheendoplasmicreticulum(ER),undergoposttranslationalmodi cationintheGolgi,andtraf ctotheirusualplasmamembranelocation(Grafetal.,2002,2003).IfeitherABCG5orABCG8isexpressedindividually,orifhetero-dimerizationisdisruptedbyapointmutationineithertransporter,bothtransportersareretainedintheERanddegraded,indicatingthatformationoftheABCG5-ABCG8heterodimerisaprerequi-siteforplasmamembranelocalization(Grafetal.,2002,2004).ThesestudiessuggestthatonlyasubsetoftheABCGtrans-porterdimersthatmaybedetectedbyimmunoprecipitationarecapableofexitingtheproteinmaturationmachineryintheERand

thatERexitcanbeusedasanassessmentofthebiologicalrelevanceoffunctionaldimers.

TwoABCGhalf-transporters,ABCG11andABCG12,havebeenimplicatedintheexportoflipidsfromtheepidermistothecuticle,whichsealsandprotectstheaerialtissuesoftheplantbody(Bird,2008).Thecuticleisatoughcross-linkedcutinpolyesterscaffoldcomposedofhydroxy-C16andC18fattyacidsandglycerol(Pollardetal.,2008),surroundedbyandcoveredwithahydrophobicwaxmixturedominatedbyvery-long-chainfattyacidderivatives(Jetteretal.,2006;Samuelsetal.,2008).ABCGhalf-transportersrequiredforaccumulationofbothcutinandwaxatthecellsurfacehavebeenidenti edbymutantanalysisinArabidopsis.abcg11/wbc11/desperado/cof1mutantsdisplayreducedcutinandwaxlevels(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Detailedanalysesofthesechemicalphenotypesrevealedthatallwaxandcutinconstituentsweredecreasedinthesemutants.AssumingthatABCG11candirectlytransportcuticularlipids,thesedataimplythatABCG11hasabroadsubstratespeci cityforavarietyofstructurallydiversecuticularlipids(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).ThecloselyrelatedABCG12/CER5transporterisrequiredforwax(Pighinetal.,2004),butnotcutin,export(Birdetal.,2007).abcg12mutantshaveareductiononlyinwaxcompo-nents,suggestingthatABCG12hasanarrowersubstratespec-i citythanABCG11(Pighinetal.,2004).FluorescentlytaggedABCG11orABCG12islocalizedtotheplasmamembraneandrescuescuticularlipidde cienciesoftheknockoutmutantsinstablytransformedlines(Pighinetal.,2004;Birdetal.,2007).Consistentwitharoleincuticularlipidexport,bothgenesarehighlyexpressedinthestemepidermis,wherewaxandcutinsynthesisandsecretionareextremelyhigh(Pighinetal.,2004;Suhetal.,2005;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).However,ABCG11isalsoexpressedintissuesinwhichcuticularlipidsarenotsynthesized(e.g.,emerginglateralroots),suggestingthatitmayplayrolesbeyondcuticularlipidexport(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Indeed,abcg11mutantsdisplaypleiotropicphenotypes,includingdwar sm,lossofapicaldominance,andsterility,whileabcg12mutantsarephenotypicallynormalexceptfortheirglossystems(Pighinetal.,2004;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Epidermalcellsofbothabcg11andabcg12mutantsaccumulatelipidicinclusions,presumablyduetotheaggregationofwaxmoleculesthataresynthesized,butnotexported,fromthesemutants(Pighinetal.,2004;Birdetal.,2007;Panikashvilietal.,2007).abcg11abcg12doublemutantshavethesamelevelsofresidualwaxaseitherofthesinglemutants,suggestingthatABCG11andABCG12actinthesamepathwayorcomplexincuticularwaxexport(Birdetal.,2007).Basedonthepleiotropicphenotypesofabcg11mutants,wehypothesizedthatdifferentdimerizationcombinationsofABCGtransporterscouldaccountforthemultiplefunctionsoftheABCG11half-transporter(Birdetal.,2007).Inthisstudy,ABCG11/ABCG12heterodimersandABCG11homodimersweredemonstratedusingbimolecular uorescencecomple-mentation(BiFC),whileABCG12homodimerswerenot.Het-erodimerizationbetweenABCG11andABCG12wasfurther

FlexiblePairingofABCGTransporters3067

supportedbythebehavioroftheABCtransportersduringtheirbiosynthesisandsecretioninepidermalcells,whichactivelysynthesizeandsecretecuticularlipids.ThedifferentdimercombinationsdemonstratedbyBiFCcanaccountforthebe-haviorofthesehalf-transportersduringtheirtraf cking.ABCG12wasretainedinlipidicinclusionsintheabsenceofABCG11,andtheseinclusionswerecontiguouswiththeER.Thisstudyem-phasizesthe exibilityofthehalf-transportersystemofABCGtransporters,inwhichspeci cdimercombinationsperformspecializedfunctionsanddifferentcombinationsofABCGtrans-porterscanperformdifferentfunctions.

RESULTS

ABCG11andABCG12FormaHeterodimer,andABCG11CanHomodimerize

GiventhatABCG11andABCG12arebothhalf-transporters(Verrieretal.,2008)andthatthedoublemutantphenotypeindicatedthattheylikelyactinthesamepathwayorcomplexinwaxexport(Birdetal.,2007),theirphysicalinteractionwastestedinvivousingBiFC(Figure1).Thisplant-basedsystemwasusedbecauseithasprovendif cult,bothinourhandsandasdocumentedbyothers(GeislerandMurphy,2006;YangandMurphy,2009),toexpressplantABCtransportersinSaccharo-mycescerevisiae,thuslimitingyeastprotein–proteininteractionstudies.IntheBiFCsystem,enhancedyellow uorescentprotein(EYFP)issplitintotwohalves:N-terminal(nYFP)andC-terminal(cYFP),whicharefusedtotheproteinsofinterest.Cotransfor-mationoftheseconstructsintoatransientexpressionsysteminArabidopsisleafmesophyllprotoplastsallowsreconstitutionofYFPifthetwoproteinsareinclosephysicalproximity,therebyallowingdetectionofYFPsignal(Citovskyetal.,2006).Asigni cantproportionofprotoplastscotransformedwithcYFP-ABCG11andnYFP-ABCG12,orconversely,withcYFP-ABCG12andnYFP-ABCG11,displayedbrightyellow uores-cenceintheplasmamembrane,indicatingthatthesetwoproteinsarecapableofformingaheterodimerinvivo(P<0.05)(Figures1C,1D,and1I;seeSupplementalFigure1online).Thisalsocon rmsthatABCGBiFCconstructswitheithertheC-orN-terminalpiecesofYFParecapableofgeneratingyellow uorescence,regardlessofthecombinationused.

WhencYFP-ABCG11andnYFP-ABCG11werecotrans-formedintoprotoplasts,yellow uorescencewasobservedintheplasmamembraneofasigni cantproportionofthesecells,indicatingthatABCG11canalsohomodimerize(P<0.05)(Figures1A,1B,and1I).Bycontrast,whencYFP-ABCG12andnYFP-ABCG12werecotransformed,onlyasmallproportionofprotoplasts uorescedfaintlywhenimagedunderthesameconditions(Figures1E,1F,and1I;seeSupplementalFigure1online).Todeterminewhetherthissignalwasduetoagenuine,low-levelhomodimerizationofABCG12orwhetheritwasanartifactofcolocalizationoftwohalf-YFPconstructstotheplasmamembrane,eachoftheABCGBiFCconstructswerecotrans-formedwithBiFCconstructsforcomponentsofaplasmamem-brane–localizedrootnitratetransportercomplex(ArabidopsisNRT2.1orNRT3.1)(Yongetal.,2010),whicharenotpredictedto

3068ThePlantCell

Figure1.ABCG11andABCG12HeterodimerizeandABCG11Homo-dimerizesintheBiFCSystem.

Onlyprotoplastswithintactplasmamembranes,shownwithbright- eldlightmicroscopy(A,C,E,G),weretestedforthepresenceofyellow uorescence,indicatingprotein–proteininteractionduetoassemblyofsplitYFP,shownwithconfocalmicroscopy([B],[D],[F],and[H]).CotransformationofcYFP-ABCG11andnYFP-ABCG11intoprotoplastswithintactplasmamembranes(A)generatesyellow uorescence(false-coloredgreen)attheplasmamembrane,surroundingchloroplastauto- uorescence(false-coloredmagenta)inconfocal(B).CotransformationofcYFP-ABCG11andnYFP-ABCG12alsogeneratesyellow uores-cenceattheplasmamembrane([C]and[D]).However,cotransforma-tionofcYFP-ABCG12andnYFP-ABCG12([E]and[F])orcYFP-ABCG11andNRT3.1-nYFP([G]and[H])generatedonlyfaintyellow uorescenceinalowproportionofprotoplasts.Resultswerequanti edasthepercentageof uorescentprotoplasts,relativetothenumberof uores-centprotoplastsinthepositivecontrol(full-lengthYFP)(I).n=8independentexperiments(totalof>1300protoplastsscored),barsrepresentSE,*denotesstatisticallysigni cantdifferencesbetweensamples(P<0.05),andbars=10mm.Allprotoplasts(exceptfortheoverexpressingYFPcontrol)wereimagedatthesameexposuretimeanddetectorgaintoallowforcomparisonsofrelative uorescence.

interactwithABCGtransporters.ProtoplastscotransformedwithNRT2.1-cYFPandeithernYFP-ABCG11ornYFP-ABCG12orwithNRT3.1-nYFPandeithercYFP-ABCG11orcYFP-ABCG12displayedthesamefaint uorescenceascYFP-ABCG12withnYFP-ABCG12(Figures1Eto1I;seeSupplementalFigure1on-line).Theseproportionsof uorescentprotoplastswerenotsigni cantlydifferentfromtheproportionobservedwhenthetwoABCG12constructswerecotransformed(P>0.35).Thus,theselowproportionsoffaintly uorescingprotoplastsarelikely

backgroundsignalduetochanceassociationsbetweenproteinsthatareplasmamembranelocalizedbutdonotlegitimatelyinteract.

ABCG11Traf ckingtothePlasmaMembraneIsIndependentofABCG12

StudiesofABCGhalf-transportersinmammaliancellsindicatethatbothpartnersofaheterodimermustbepresentforthedimertotraf ctotheplasmamembrane(Grafetal.,2003,2004).TotestwhetherABCG11orABCG12cantraf cnormallyonlyinthepresenceoftheirpartnersandtoputtheseinteractionsintothecontextofcuticularlipidsecretionintheepidermis,stablytransformedplantlinesexpressing uorescentlytaggedABCGs(Pighinetal.,2004;Birdetal.,2007)werecrossedintothesingle(abcg11)anddouble(abcg11abcg12)knockoutmutants.YFP-ABCG11successfullytraf ckedtotheplasmamembraneinthepresenceofitswild-typeABCG12partner(i.e.,inthesingleabcg11mutantbackground;Figure2A).PlasmamembranelocalizationofYFP-ABCG11wasvisualizedastwodistinctsignalsfromneighboringcellsliningtheadjacentcellwall,whichwaslabeledwithpropidiumiodide(Figures2Band2C).IntheabsenceofABCG12(inabcg11abcg12doubleknockoutmutantbackground),YFP-ABCG11wasalsolocalizedtotheplasmamembrane(Figure2E),whereitcolocalizedwiththeplasmamembranemarkerFM4-64(Figures2Fand2G).YFP-ABCG11localizationinthedoublemutantbackgroundwascon rmedusingtransmissionelectronmicroscopy(TEM)immunogoldla-belingofcryo- xed,freeze-substitutedstemepidermalcells(Figure2D),probedwithananti-green uorescentprotein(GFP)antibody.Theplasmamembraneofepidermalcellswaslabeledbyanti-GFPintransgenicplantlinescarryingYFP-ABCG11(Figure2H),butnosignalabovebackgroundwasdetectedinwild-typecontrolplantsorinsamplesprobedwithoutaprimaryantibody(seeSupplementalFigure2online).TherewasnoevidenceofpolarlocalizationofYFP-ABCG11instemepidermalcellsusingthishigh-resolutionTEMtechnique,incontrastwithpreviousreportsusingconfocalmicroscopy,wheresignalin-tensitiescanbedistortedbyopticalconditionsordissection(Panikashvilietal.,2007).TheseresultsdemonstratethatABCG11isabletotraf ctotheplasmamembraneevenintheabsenceofABCG12.ThisindicatesthatABCG11mayhetero-dimerizewithotherABCGhalf-transportersthatarepresentinthestemepidermis,suchasABCG18andABCG19(Suhetal.,2005).Alternatively,ABCG11mayformahomodimerinvivo,aninterpretationthatisconsistentwiththeBiFCdata.

ABCG12Traf ckingtothePlasmaMembraneIsDependentonABCG11

IfABCG12formsanobligateheterodimerwithABCG11,thenABCG11ispredictedtoberequiredfornormaltraf cofABCG12totheplasmamembrane.Therefore,GFP-ABCG12waslocal-izedinabcg12andabcg11abcg12mutantstoinvestigateitstraf ckinginthepresenceandabsenceofitsABCG11partner,respectively.Inthesingleabcg12knockoutmutants,GFP-ABCG12signalwasdetectedattheplasmamembrane(Figure3A),adjacenttothecellwall,visualizedwithpropidium

iodide

FlexiblePairingofABCGTransporters3069

Figure2.Traf ckingofABCG11tothePlasmaMembraneIsIndependentofABCG12.

Inabcg11mutants([A]to[C]),YFP-ABCG11islocalizedtotheplasmamembrane(A),asshownbycounterstainingwithpropidiumiodide(B)andmerge(C).TEMofthewild-typestemillustratesepidermalcellmorphology(D).Inabcg11abcg12doublemutants([E]to[H]),YFP-ABCG11isalsolocalizedtotheplasmamembrane(E),whereitcolocalizeswithFM4-64(F)inthemerge(G).TEMimmunogoldlocalizationwithanti-GFPcon rmsYFP-ABCG11localizationtotheplasmamembrane(H).Thewhiteboxin(G)highlightsanareathatisrepresentativeofthe eldofviewin(H).Circleshighlightgoldparticles,andarrowheadsdenotetheplasmamembrane.Bars=10mminconfocalimages([A]to[C]and[E]to[G]),5mmin(D),and200nmin(H).

(Figures3Band3C).ImmunogoldTEMlabelingofthesingleabcg12mutantexpressingtheGFP-ABCG12constructrevealedthatanti-GFPsignalwaspredominantlyattheplasmamem-brane,withlittleintracellularandcellwallbackgroundlabel(Figure3D;seeSupplementalFigure2online).However,intheabcg11abcg12doublemutantbackground,GFP-ABCG12sig-nalwasdetectedinareticulatenetworkresemblingtheERandinlargeaggregationsinthemiddleofthecells(Figure3E).ThissignalhadalowlevelofcolocalizationwithFM4-64(Figures3Fand3G),whichisnotconsistentwithplasmamembranelocal-ization.InTEM,anti-GFPlabelingwasconcentratedinthelargeaggregationsofsheet-likeinclusionsthathavebeendetectedwithinthecytoplasmofabcg11andabcg12mutants(Figure3H;Pighinetal.,2004;Birdetal.,2007;Panikashvilietal.,2007).GFP-ABCG12retentionintheERintheabsenceofABCG11isconsistentwiththepredictionthatABCG12dimerizesonlywithABCG11inthestemepidermalcellsandthat,asinmammals,ABCGhalf-transporterdimerformationisrequiredfortraf ckingtotheplasmamembrane(Grafetal.,2003,2004).

AccumulationofGFP-ABCG12intheabcg11abcg12mutantinclusionscouldbeduetoanonspeci cERstressresponseand/orageneraltraf ckingdefectinabcg11mutants.ImmunogoldTEMlabelingforanotherplasmamembrane–localizedprotein,thePIP2aquaporin(Botsetal.,2005),detectedPIP2intheplasma

membraneofwild-typeandabcg11mutantcells(Figures4Aand4B).However,nolabelingabovebackgroundwasdetectedintheinclusions(Figure4C;seeSupplementalFigure3online).Thiscon rmsthatthefailureofGFP-ABCG12totraf ctotheplasmamembraneinabcg11mutantsisspeci ctoABCG12andthattheinclusionsarenotageneralsinkforplasmamembrane–localizedproteins.Similarly,RT-PCRanalysisofgenestypicallyupregu-latedbytheunfoldedproteinresponse(MartinezandChrispeels,2003;Kamauchietal.,2005)con rmedthatthepresenceofinclusionsdoesnotinducesigni cantunfoldedproteinresponse(seeSupplementalFigure4online).Thesedataagreewitharecentmicroarrayanalysisofgeneexpressionchangesinabcg11mutants(Panikashvilietal.,2010).Therefore,GFP-ABCG12re-tentionininclusionsisnotduetoageneralproteinormembranetraf ckingdefectinabcg11mutants.

MembraneInclusionsinabcg11MutantsAreContiguouswiththeER

BecauseGFP-ABCG12wasretainedintheERandintheinclusionsofabcg11abcg12doublemutants,therelationshipbetweentheseinclusionsandtheERwasinvestigatedfurther.TEMwasusedtoexaminethemorphologyofabcg11stemepidermalcellswhereinclusionsprotrudedintothevacuole

of

3070ThePlantCell

Figure3.Traf ckingofABCG12tothePlasmaMembraneIsDependentonABCG11.

Inabcg12mutants([A]to[D]),GFP-ABCG12islocalizedtotheplasmamembrane(A),asshownbycounterstainingwiththecellwalldyepropidiumiodide(B),merge(C),andTEMimmunogoldlocalizationwithanti-GFP(D).Inabcg11abcg12doublemutants([E]to[H]),GFP-ABCG12isretainedwithintheERandinlipidicinclusionsofthesemutants(E)andfailstocolocalizewiththeplasmamembranedyeFM4-64(F)inthemerge(G).TEMimmunogoldlocalizationwithanti-GFPcon rmsGFP-ABCG12localizationtoinclusions(H).Whiteboxesin(C)and(G)highlightanareathatisrepresentativeofthe eldofviewin(D)and(H),respectively,circleshighlightgoldparticles,andarrowheadsdenotetheplasmamembrane.Bars=10mminconfocalimages([A]to[C]and[E]to[G])and200nminTEM([D]and[H]).

epidermalcells(Figure5A).ERmembranesareoftencloselyassociatedwiththeinclusions,eitherlayeredbetweeninclu-sions,oratthetipsoftheinclusions(Figures5Band5C).Bycontrast,therewasnorelationshipbetweentheGolgiapparatusandtheinclusions(Figure5B).

Tocon rmtheassociationoftheERwiththeinclusions,ERwaspositivelyidenti edwithestablishedmarkersinabcg11mutants.Inwild-typeepidermalcells,theERmarkerGFP-HDEL(Batokoetal.,2000)labeledtheERnetwork,includingthecorticalER(Figure6A).Inabcg11mutantstemepidermalcells,GFP-HDELlabeledlargeaggregationsinthecenterofthesecells,inadditiontothenormalERnetwork(Figure6E).ThispatternisstrikinglysimilartothelipidicinclusionslabeledwithNileReddetectedinabcg12mutants(Pighinetal.,2004).Inabcg11mutants,NileRedstainedasimilarpatterntoGFP-HDEL(Figures6B,6C,6F,and6G),suggestingthattheseERaccu-mulationsarelipidrichandmaybecomposedofcuticularlipidsthataresynthesized,butnotsecreted,inabcg11mutants.

SincetheERwasoftenlayeredbetweeninclusions,thelive-cellimagingwithGFP-HDELmightre ecttrappingofERmembranesbetweeninclusions,ratherthanexpansionoftheERmembranestoforminclusions.Todifferentiatebetweenthesepossibilities,TEMimmunogoldlabelingwasemployed

withanticalreticulin,anestablishedmarkerfortheER(Coughlanetal.,1997).Inwild-typecells,anticalreticulinlabeledtheelectron-lucentERlumen(Figure6D;seeSupplementalFigure5online).Inabcg11mutants,anticalreticulinlabeledbothERlumenandinclusions(Figure6H;seeSupplementalFigure5online).Thiscon rmsthattheinclusionsthemselvescontainbona deERmarkers.Together,thesedatasuggestthatinabcg11mutants,lipidsareretainedininclusionsthatareasso-ciatedwithER-derivedmembranes.DISCUSSION

Speci cdimerpairingsofABCGtransportershavebeenhy-pothesizedtoallowmultiplefunctionsforasinglegeneproductinbothArabidopsiscuticularlipidexportbyABCG11andABCG12(Birdetal.,2007,Bird,2008)andinDrosophilaeyepigmentaccumulationbyWHITE,BROWN,andSCARLET(SullivanandSullivan,1975;Sullivanetal.,1979;Mackenzieetal.,2000;Evansetal.,2008).However,thesedimercombina-tionshavebeenhypothesizedbasedonsequenceanalysisandmutantphenotypesandhavenotbeendirectlytested,untilnow.Here,physicalinteractionsbetweenArabidopsisABCG11andABCG12areexperimentallydemonstratedbyBiFC.BiFC

data

FlexiblePairingofABCGTransporters3071

Figure4.Traf ckingofPIP2tothePlasmaMembraneIsIndependentofABCG11.

Inwild-typestemepidermalcells,thePIP2aquaporinislocalizedtotheplasmamembrane(A).PIP2isalsolocalizedtotheplasmamembraneinabcg11mutants(B)andisnotretainedwithintheabcg11mutantinclusions(C).Circleshighlightgoldparticles,arrowheadsdenotetheplasmamembrane,andbars=200

nm.

indicatewhichpairingsarephysicallypossible,assumingthesegeneproductsareexpressedinthesamecellatthesametime.ToplaceABCGtransporterdimerizationinthecontextoftheepidermalcellduringlipidsecretion,biosynthetictraf cofABCGtransportersfromtheERtotheplasmamembranewasexam-inedinthesecells.Thebehaviorofthesehalf-transportersduringtheirbiosynthesisandtraf ckingareconsistentwiththedifferentdimercombinationsdemonstratedbyBiFC.Theconsistencybetweenthesetwodatasets,togetherwithfunctionaldatadeducedfrommutantphenotypes(Pighinetal.,2004;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007),leadtothemodelsproposedbelowforspeci cdimeriza-tionpairingsofABCGtransportersindiversefunctions.ABCG11UndergoesFlexibleDimerizationandPerformsMultipleFunctions

abcg11mutantsdisplaypleiotropicphenotypes,includingre-ducedsurfacewaxandcutinmonomers,stuntedgrowth,organfusions,reducedfertility,andreducedapicaldominance,indi-catingthatABCG11isinvolvedinprocessesinadditiontowaxexport(Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007;Ukitsuetal.,2007).Furthermore,theexpressionpatternofABCG11extendsbeyondthatofABCG12totissuesinwhichneithercutinnorwaxisbeingsynthesized(e.g.,emerginglateralroots)(Suhetal.,2005;Tou ghietal.,2005;Birdetal.,2007;Luoetal.,2007;Panikashvilietal.,2007).Basedonmutantpheno-typesandexpressionpattern,weproposethatABCG11actsasageneralistABCGtransporter,pairingwithdifferenthalf-trans-portersindifferenttissuestotransportstructurallydiversesub-strates.Consistentwiththis,ABCG11wasabletoexittheERandtraf ctotheplasmamembraneindependentlyofABCG12,indicatingthatitcandimerizewithotherABCGhalf-transportersinepidermalcells.Additionally,homodimerizationofABCG11wasdemonstratedinBiFCassays.TheseresultsareconsistentwiththemodelinwhichABCG11homodimerizestoexportcutinprecursorsfromthestemepidermis(Birdetal.,2007).Deter-miningwhetherABCG11functionsincutinexportasahomo-dimerwillrequirefurtherexperiments.Whileanalysisofseveralcutinbiosynthesismutantshasrevealedgenesrequiredfor

cutin

Figure5.MembraneInclusionsinabcg11MutantsAreCloselyAssociatedwiththeER.

Stemepidermalcellsofabcg11mutantsaccumulateinclusionsthatprotrudeintothelargecentralvacuole(A).Theseinclusionsarecloselyassociatedandinterspersedwiththeelectron-lucentER([B]and[C]);however,themorphologyoftheGolgiapparatusseemsunaffected(B).Arrowsin(B)and(C)highlightcloseassociationsbetweenERandinclusions.Bars=5mmin(A),500nmin(B),and200nmin(C).

3072ThePlantCell

Figure6.MembraneInclusionsinabcg11MutantsAreContiguouswiththeER.

Inwild-typestemepidermalcells([A]to[D]),GFP-HDELlabelstheERnetwork(A),andNileRed(alipidicdye)faintlylabelscellularmembranes(B),whichpartiallycolocalizewithGFP-HDELinthemerge(C).TEMimmunogoldlabelingwithanticalreticulincon rmsthepresenceofthisepitopeinthewild-typeelectron-lucentER(D).Inabcg11mutants([E]to[H]),GFP-HDELlabelsthereticulateERnetworkaswellaslargeaggregationsinthecenterofthecells(E).NileRedsignalindicatesthattheseinclusionsarelipidic(F),andGFP-HDELandNileRedoverlapininclusionsinthemerge(G).TEMimmunogoldlabelingwithanticalreticulinshowsanaccumulationofthisERepitopeininclusions(H).Whiteboxesin(C)and(G)highlightanareathatisrepresentativeofthe eldofviewin(D)and(H),respectively,andcircleshighlightgoldparticles.Bars=10mminconfocalimages([A]to[C]and[E]to[G])and200nminTEM([D]and[H]).

monomerbiosynthesisandassembly,thenatureofcutinpre-cursorsthatareexportedforassemblyinthecuticleisnotknown(Pollardetal.,2008).Thisgapinourunderstanding,aswellastheproblemthatwaxconstituentsaresolidatbiologicallyrelevanttemperatures,makesassessmentofthepossiblesubstratesofABCG11challenging.BothBiFCandtraf ckingdatademon-stratethatABCG11iscapableofpromiscuouspairingwithmultipleABCGhalf-transporters.ItispossiblethatABCG11dimerizeswithmultiplepartnerstoformavarietyoffulltrans-porterstoperformdiversefunctions,ashasbeenhypothesizedintheDrosophilaWHITE/BROWN/SCARLETmodel.Indeed,ABCG11hasbeenimplicatedinfunctionsasdiverseasmain-tenanceofapicaldominance, owerdevelopment,embryogen-esis,androotsuberinexport(Panikashvilietal.,2010).Thisgivesrisetoamodelinwhichthepleiotropiceffectsofabcg11mutationareduetothelossofthisvarietyoffulltransporters.ABCG12Speci callyFormsHeterodimerswithABCG11forWaxExport

IncontrastwiththebroadexpressionpatternofABCG11andthepleiotropicphenotypesofabcg11mutants,mutantsinabcg12displayonlywax-relatedphenotypes,andexpressionofABCG12isenrichedinthestemepidermiswherewaxisactivelybeingsynthesizedandsecreted(Pighinetal.,2004;Suhetal.,2005;Tou ghietal.,2005).ThereisaprecedentforstrictABCGheterodimerizationinMedicagotruncatulaarbuscularmycorrhi-zalsymbiosis(Zhangetal.,2010).Duringarbusculeformation,twoABCGhalf-transportergenes,STUNTEDARBUSCULE(STR)andSTR2,arehighlyexpressed.STRandSTR2hetero-dimerizeandareincapableofforminghomodimers.Theiriden-ticalmutantphenotypesandexpressionpatternssuggestthat,likeABCG12,thesetwoABCGhalf-transportersarespecialists(Zhangetal.,2010).ConsistentwiththehypothesisthatABCG12isaspecialist,GFP-ABCG12wasonlyabletoexittheERandmovetotheplasmamembraneofepidermalcellsinthepresenceofABCG11,indicatingthatABCG12formsanobligatehetero-dimerwithABCG11instemepidermalcells.ThisissupportedbytheBiFCinteractiondata,whichindicatethatABCG12canheterodimerizewithABCG11butisincapableofformingahomodimer.Therefore,thewaxphenotypesoftheabcg11andabcg12singlemutantsandtheabcg11abcg12doublemutantsarearesultofdefectsinthis

heterodimer.

WaxesThatAreNotExportedinABCGMutantsAccumulateinER-DerivedInclusions

Inabcg11orabcg12mutants,membranouslipidicinclusionsaccumulateintheepidermalcells(Pighinetal.,2004;Birdetal.,2007;Panikashvilietal.,2007).Here,wedemonstratethattheinclusionsinabcg11mutantscontainmarkersoftheERbutnotmarkersoftheplasmamembrane.ItispossiblethatERexpan-sionisastressresponsetosequesterinsolublecuticularlipids.Similarly,inyeast,theERincreasesinsizetoaccommodatedefectiveproteins,independentoftheunfoldedproteinre-sponse(Schucketal.,2009).Alternatively,theinclusionscouldre ectthenatureoflipidtraf cduringcuticularlipidsecretion.Alloftheenzymesthathavebeencharacterizedinwaxsyn-thesishavebeenlocalizedtotheERmembranes(Zhengetal.,2005;Greeretal.,2007;Bachetal.,2008;Lietal.,2008).Ifintermediatesecretorycompartments,suchastheGolgiapparatus,arerequiredforwaxsecretiontothecellsurface,thenwaxaccumulationinthesecompartmentswouldbeex-pectedtooccurwhentransportisblocked.However,GolgiandplasmamembranemorphologyappearedunaffectedinTEMofabcg11knockoutmutants.Whilethesubcellularcom-partmentsinvolvedinwaxsecretionarenotknown,accumu-lationofwaxesonlyintheERisconsistentwithwaxmovingdirectlyfromtheERtotheplasmamembranevianonvesicularlipidtraf c,byanalogytoyeastlipidtransportsystems(LevineandLoewen,2006).

Insummary,ArabidopsisABCG11iscapableof exibledi-merizationtoformeitheraheterodimerorahomodimerattheplasmamembraneinvivo.Bycontrast,ABCG12formsanobligateheterodimerwithABCG11,andheterodimerizationisrequiredfornormaltraf ckingtotheplasmamembrane.BasedonthesedataandonpreviousABCGstudies,therearetwoemergingparadigms: exiblepairingofoneABCGgeneproductwithmultiplepartnerstoperformdiversefunctionsandformationofobligateABCGheterodimersforspecializedfunctions.TheseparadigmshavebeenformerlydeducedbutnotexperimentallytestedinthecanonicalWHITE/BROWN/SCARLETcomplexinDrosophila.Inmammaliancells,casesofbiologicallyrelevant exibleABCGtransporterpartneringhavenotbeendescribed,althoughseverallinesofevidencehintthatthisispossible(Grafetal.,2002;Cserepesetal.,2004).ThisstudydemonstratesthatmechanismsofABCGtran-sporterdimerizationareconservedacrossbiologicalkingdoms,despitethedivergentfunctionalrolesplayedbythesetrans-porters.

METHODSPlantMaterial

SeedlingsweresownonATmediaandgrowninanenvironmentalgrowthchamberat218C,70to80%humidity,and24hlight(80to100mEm22s21)forroughly10dbeforetransfertoSunshineMix5soil.Thecer5-2,wbc11-3,cer5-2+CER5pro:GFP-CER5,andwbc11-3+35Spro:YFP-WBC11lines(allintheColumbia-0[Col-0]background)havebeenpreviouslydescribed(Pighinetal.,2004;Birdetal.,2007),andCol-0seedscarryingthe35Spro:GFP-HDELERmarkerwereagenerousgiftfromHugoZheng(Batokoetal.,2000).

FlexiblePairingofABCGTransporters3073

BiFCTransgeneConstructionandProtoplastTransformationABCG12cDNAwasampli edfromtheGFP:CER5vector(Pighinetal.,2004),andXmaIandEcoRIsiteswereaddedusingtheprimersABCG12.P3andABCG12.P4(seeSupplementalTable1online).ABCG11cDNAwasampli edfromYFP:WBC11(Birdetal.,2007),andXmaIandEcoRIsiteswereaddedusingtheprimersABCG11.P3andABCG11.P4(seeSupplementalFigure6online).TheresultingproductswereligatedintotheEcoRIandXmaIsitesofpSAT4-cEYFP-C1-BandpSAT4-nEYFP-C1(Citovskyetal.,2006)andveri edbysequencing.ControlBiFCvectorscontainingcomponentsoftheArabidopsisthaliananitratetransportmachinerywereagenerousgiftfromZ.KoturandA.Glass(Yongetal.,2010).PlasmidDNAwaspuri edfromEscherichiacoliculturesusinganendotoxin-freeplasmidmaxiprepkit(Qiagen).ProtoplastsfromCol-0leaveswerepreparedandtransformedasdescribed(Tiwarietal.,2006)with10mgofeachvectorusedineachprotoplasttransformation.Thenumberof uorescentprotoplastswasscoredoutofthetotalnumberofliveprotoplasts(i.e.,thosewithanintactplasmamembranewhenviewedwithbright- eldmicroscopy)andpresentedasapercentagerelativetothenumberof uorescentprotoplastsinthepositivecontrol(pSAT6+35Spro:EYFP)asanestimationoftransformationef ciency.Datafromconversetransformations(e.g.,cYFP-ABCG11+nYFP-ABCG12andcYFP-ABCG12+nYFP-ABCG11)weregrouped.Tomeettheassump-tionsofanalysisofvariance(WhitlockandSchluter,2009),datafromeightindependentexperimentswerenaturallog(ln)transformedandcorrectedforvariationsintransformationef ciencyamongexperimentsbysub-tractingthemeantransformationef ciencyofthatexperimentfromeachvalue.MeanswerecomparedusinganalysisofvarianceandaTukeypost-hoctestusingSPSS(IBM).ConfocalMicroscopy

TransformedprotoplastsweremountedinWIsolution,ordissectedstemsegmentsfromthetop3cmfromtheshootapicalmeristem(wherecuticlesynthesisandsecretionisthehighest;Suhetal.,2005)weremountedindistilledwaterandimmediatelyimaged.Stemsegmentswerestainedwith1mg/mLpropidiumiodide(Sigma-Aldrich)or10mMFM4-64(MolecularProbes)for10min.ImageswerecollectedusingaZeiss510MetascanheadonaZeissAxiovert200MwithaZeissAxioCamHRmCCDcameraorusingaQuorumWaveFXspinning-diskscanheadonaLeicaDMI6000microscopewithaHamamatsuImagEMCCDcamera.OntheZeissmicroscope,GFPwasdetectedusinga488-nmlaserwitha505-to530-nm lter,YFPwasdetectedusinga514-nmlaserwitha535-to580-nm lter,andpropidiumiodideandFM4-64weredetectedusinga514-nmlaserwitha600-to650-nm lter.OntheQuorumsystem,GFPandYFPweredetectedusinga491-nmlaserwitha528-to566-nm lter.ToallowcomparisonoftherelativebrightnessbetweendifferentBiFCtreatments,allprotoplasts(excepttheYFPoverexpressingpositivecontrol)wereimagedunderidenticalconditions,includingdetectorgainandexposuretime.ImageswereprocessedusingVolocity(Improvision)orImageJ,andAdobeIllustrator.

High-PressureFreezing,TEM,andImmunogoldLabeling

Stemtissuefromthetop1to3cmfromtheshootapicalmeristemwasfrozenin0.2MsucroseinBsampleholders(TedPella)usingaLeicaHPM-100high-pressurefreezer.Freezesubstitution,resinin ltration,sectioning,poststaining,andimagingwereperformedasdescribed(McFarlaneetal.,2008).Immunolabelingofhigh-pressurefrozenmaterialwasperformedasdescribed(McFarlaneetal.,2008).Primaryantibodieswere1/50polyclonalanti-GFP(A6455fromMolecularProbes);1/20polyclonalanti-calreticulin,generatedagainstcalreticulinfromcastorbean(RicinuscommuniscvHale),agenerousgiftfromSeanCoughlan(Coughlanetal.,1997);and1/50polyclonalanti-PIP2,generatedagainst

3074ThePlantCell

PIP2fromtobacco(NicotianatabacumcvPetitHavanaSR1),agenerousgiftfromRalfKaldenhoff,(Botsetal.,2005).Secondaryantibodywas1/10010nmgold-conjugatedgoat-anti-rabbit(TedPella).ImageswereprocessedusingImageJandAdobeIllustrator.GeneExpressionAnalysis

TotalRNAwasextractedusingTRIzolreagent(Invitrogen)fromstemsegments1to3cmfromtheshootapicalmeristemorfrom10-d-oldseedlingsgrowninliquidATmediaplus1%sucrose,withandwithout5mMDTT(aspositiveandnegativecontrolsfortheunfoldedproteinresponse,respectively).cDNAwassynthesizedfrom15mgofRNAusinganoligodT18primerandSuperScriptIIIreversetranscriptase(Invitrogen).RT-PCRwasperformedfor20cyclesusing1mLofcDNAwithintron- anking,gene-speci cprimersforHSP90.7,BiP1/BiP2(notspeci ctoeithergenealone,sincetheseare97%identical),CALNEXIN1,CALRE-TICULIN2,andPDI-LIKE9(seeSupplementalTable1online).cDNAlevelswerenormalizedusingprimersfortheUBC10ubiquitinconjugatingenzymegenefor20cycles.PCRproductswerevisualizedusingSYBR-Safe(Invitrogen).

AccessionNumbers

SequencedatafromthisarticlecanbefoundintheArabidopsisGenomeInitiativeorGenBank/EMBLdatabasesunderthefollowingaccessionnumbers:At1g17840(ABCG11),At1g51500(ABCG12),At5g53300(UBC10),At4g24190(HSP90.7),At5g28540(BiP1),At5g42020(BiP2),At5g61790(Calnexin1),At1g09210(Calreticulin2),andAt2g32920(PDI-like9).

SupplementalData

Thefollowingmaterialsareavailableintheonlineversionofthisarticle.SupplementalFigure1.ControlsforBiFCProtein–ProteinInteractionAssay.

SupplementalFigure2.ControlsforAnti-GFPImmunogoldTEM.SupplementalFigure3.ControlsforAnti-PIP2ImmunogoldTEM.SupplementalFigure4.TheUnfoldedProteinResponseIsNotSigni cantlyUpregulatedinabcg11MutantswithInclusions.SupplementalFigure5.ControlsforAnticalreticulinImmunogoldTEM.

SupplementalTable1.AListofPrimersEmployedinThisStudy.

ACKNOWLEDGMENTS

WethanktheABRCforprovidingseedstocksandBiFCvectors,SeanCoughlanforanticalreticulin,RalfKaldenhoffforanti-PIP2,ZoricaKoturforthenitratetransporterBiFCconstructs,HugoZhengfortheGFP-HDELconstruct,theUniversityofBritishColumbiaBioimagingFacilityfortechnicalassistance,andLjerkaKunst,MathiasSchuetz,andTeagenQuilichiniforhelpfuldiscussionsandcommentsonthemanu-script.ThisworkwasfundedbyCanadianNaturalSciencesandEngineeringResearchCouncilDiscoveryGrantstoD.A.B.andA.L.S.andbyaCanadaGraduateScholarship-D3toH.E.M.

ReceivedJuly5,2010;revisedAugust27,2010;acceptedSeptember3,2010;publishedSeptember24,2010.

REFERENCES

Bach,L.,etal.(2008)http://A105:14727–14731.

Batoko,H.,Zheng,H.Q.,Hawes,C.,andMoore,I.(2000).RAB1GTPaseisrequiredfortransportbetweentheendoplasmicreticulumandGolgiapparatusandfornormalGolgimovementinplants.PlantCell12:2201–2218.

Bird,D.,Beisson,F.,Brigham,A.,Shin,J.,Greer,S.,Jetter,R.,Kunst,L.,Wu,X.,Yephremov,A.,andSamuels,L.(2007).Charac-terizationofArabidopsisABCG11/WBC11,anATPbindingcassette(ABC)transporterthatisrequiredforcuticularlipidsecretion.PlantJ.52:485–498.

Bird,D.A.(2008).TheroleofABCtransportersincuticularlipidsecretion.PlantSci.174:563–569.

Bots,M.,Feron,R.,Uehlein,N.,Weterings,K.,Kaldenhoff,R.,andMariani,T.(2005).PIP1andPIP2aquaporinsaredifferentiallyex-pressedduringtobaccoantherandstigmadevelopment.J.Exp.Bot.56:113–121.

Citovsky,V.,Lee,L.Y.,Vyas,S.,Glick,E.,Chen,M.H.,Vainstein,A.,Gafni,Y.,Gelvin,S.B.,andTz ra,T.(2006).Subcellularlocalizationofinteractingproteinsbybimolecular uorescencecomplementationinplanta.J.Mol.Biol.362:1120–1131.

Coughlan,S.J.,Hastings,C.,andWinfrey,R.,Jr.(1997).CloningandcharacterizationofthecalreticulingenefromRicinuscommunisL.PlantMol.Biol.34:897–911.

Cserepes,J.,Szentpe

´tery,Z.,Seres,L.,Ozvegy-Laczka,C.,Langmann,T.,Schmitz,G.,Glavinas,H.,Klein,I.,Homolya,L.,Va

´radi,A.,Sarkadi,B.,andElkind,N.B.(2004).Functionalexpres-sionandcharacterizationofthehumanABCG1andABCG4pro-teins:http://mun.320:860–867.

Evans,J.M.,Day,J.P.,Cabrero,P.,Dow,J.A.T.,andDavies,S.A.(2008).Anewroleforaclassicalgene:WhitetransportscyclicGMP.J.Exp.Biol.211:890–899.

Ewart,G.D.,Cannell,D.,Cox,G.B.,andHowells,A.J.(1994).Muta-tionalanalysisofthetraf cATPase(ABC)transportersinvolvedinuptakeofeyepigmentprecursorsinDrosophilamelanogaster.Impli-cationsforstructure-functionrelationships.J.Biol.Chem.269:10370–10377.

Geisler,M.,andMurphy,A.S.(2006).TheABCofauxintransport:Theroleofp-glycoproteinsinplantdevelopment.FEBSLett.580:1094–1102.

Graf,G.A.,Cohen,J.C.,andHobbs,H.H.(2004).MissensemutationsinABCG5andABCG8disruptheterodimerizationandtraf cking.J.Biol.Chem.279:24881–24888.

Graf,G.A.,Li,W.P.,Gerard,R.D.,Gelissen,I.,White,A.,Cohen,J.C.,andHobbs,H.H.(2002).CoexpressionofATP-bindingcassetteproteinsABCG5andABCG8permitstheirtransporttotheapicalsurface.J.Clin.Invest.110:659–669.

Graf,G.A.,Yu,L.,Li,W.P.,Gerard,R.,Tuma,P.L.,Cohen,J.C.,andHobbs,H.H.(2003).ABCG5andABCG8areobligateheterodimersforproteintraf ckingandbiliarycholesterolexcretion.J.Biol.Chem.278:48275–48282.

Greer,S.,Wen,M.,Bird,D.,Wu,X.,Samuels,L.,Kunst,L.,andJetter,R.(2007).ThecytochromeP450enzymeCYP96A15isthemidchainalkanehydroxylaseresponsibleforformationofsecondaryalcoholsandketonesinstemcuticularwaxofArabidopsis.PlantPhysiol.145:653–667.

Jetter,R.,Kunst,L.,andSamuels,L.(2006).Compositionofplantcuticularwaxes.InBiologyofthePlantCuticle,M.RiedererandC.Muller,eds(Oxford,UK:BlackwellPublishers),pp.145–181.

Kamauchi,S.,Nakatani,H.,Nakano,C.,andUrade,R.(2005).GeneexpressioninresponsetoendoplasmicreticulumstressinArabidop-sisthaliana.FEBSJ.272:3461–3476.

Kuromori,T.,Miyaji,T.,Yabuuchi,H.,Shimizu,H.,Sugimoto,E.,Kamiya,A.,Moriyama,Y.,andShinozaki,K.(2010)http://A107:2361–2366.

Levine,T.,andLoewen,C.(2006).Inter-organellemembranecontactsites:Throughaglass,darkly.Curr.Opin.CellBiol.18:371–378.Li,F.,Wu,X.,Lam,P.,Bird,D.,Zheng,H.,Samuels,L.,Jetter,R.,andKunst,L.(2008).Identi cationofthewaxestersynthase/acyl-coenzymeA:diacylglycerolacyltransferaseWSD1requiredforstemwaxesterbiosynthesisinArabidopsis.PlantPhysiol.148:97–107.

Luo,B.,Xue,X.Y.,Hu,W.L.,Wang,L.J.,andChen,X.Y.(2007).AnABCtransportergeneofArabidopsisthaliana,AtWBC11,isinvolvedincuticledevelopmentandpreventionoforganfusion.PlantCellPhysiol.48:1790–1802.

Mackenzie,S.M.,Howells,A.J.,Cox,G.B.,andEwart,G.D.(2000).Sub-cellularlocalisationofthewhite/scarletABCtransportertopig-mentgranulemembraneswithinthecompoundeyeofDrosophilamelanogaster.Genetica108:239–252.

Mart

´nez,I.M.,andChrispeels,M.J.(2003).GenomicanalysisoftheunfoldedproteinresponseinArabidopsisshowsitsconnectiontoimportantcellularprocesses.PlantCell15:561–576.

McFarlane,H.E.,Young,R.E.,Wasteneys,G.O.,andSamuels,A.L.(2008).CorticalmicrotubulesmarkthemucilagesecretiondomainoftheplasmamembraneinArabidopsisseedcoatcells.Planta227:1363–1375.

Mentewab,A.,andStewart,C.N.,Jr.(2005).OverexpressionofanArabidopsisthalianaABCtransporterconferskanamycinresistancetotransgenicplants.Nat.Biotechnol.23:1177–1180.

Panikashvili,D.,Savaldi-Goldstein,S.,Mandel,T.,Yifhar,T.,Franke,

R.B.,Ho

¨fer,R.,Schreiber,L.,Chory,J.,andAharoni,A.(2007).TheArabidopsisDESPERADO/AtWBC11transporterisrequiredforcutinandwaxsecretion.PlantPhysiol.145:1345–1360.

Panikashvili,D.,Shi,J.X.,Bocobza,S.,Franke,R.B.,Schreiber,L.,andAharoni,A.(2010).TheArabidopsisDSO/ABCG11transporteraffectscutinmetabolisminreproductiveorgansandsuberininroots.Mol.Plant3:563–575.

Pighin,J.A.,Zheng,H.,Balakshin,L.J.,Goodman,I.P.,Western,T.L.,Jetter,R.,Kunst,L.,andSamuels,A.L.(2004).PlantcuticularlipidexportrequiresanABCtransporter.Science306:702–704.

PollardM.,BeissonF.,LiY.,andOhlroggeJ.B.(2008).Buildinglipidbarriers:Biosynthesisofcutinandsuberin.TrendsPlantSci.13:236–246.

QuilichiniT.D.,Friedmann,M.,Samuels,A.L.,andDouglas,C.J.(2010).ATP-bindingcassettetransporterG26(ABCG26)isrequiredformalefertilityandpollenexineformationinArabidopsis.PlantPhysiol.,inpress.

Samuels,L.,Kunst,L.,andJetter,R.(2008).Sealingplantsurfaces:FlexiblePairingofABCGTransporters3075

Cuticularwaxformationbyepidermalcells.Annu.Rev.PlantBiol.59:683–707.

Schuck,S.,Prinz,W.A.,Thorn,K.S.,Voss,C.,andWalter,P.(2009).Membraneexpansionalleviatesendoplasmicreticulumstressinde-pendentlyoftheunfoldedproteinresponse.J.CellBiol.187:525–536.Suh,M.C.,Samuels,A.L.,Jetter,R.,Kunst,L.,Pollard,M.,Ohlrogge,J.,andBeisson,F.(2005).Cuticularlipidcomposition,surfacestructure,andgeneexpressioninArabidopsisstemepidermis.PlantPhysiol.139:1649–1665.

Sullivan,D.T.,Bell,L.A.,Paton,D.R.,andSullivan,M.C.(1979).Purinetransportbymalpighiantubulesofpteridine-de cienteyecolormu-tantsofDrosophilamelanogaster.Biochem.Genet.17:565–573.Sullivan,D.T.,Bell,L.A.,Paton,D.R.,andSullivan,M.C.(1980).GeneticandfunctionalanalysisoftryptophantransportinMalpighiantubulesofDrosophila.Biochem.Genet.18:1109–1130.

Sullivan,D.T.,andSullivan,M.C.(1975).TransportdefectsasthephysiologicalbasisforeyecolormutantsofDrosophilamelanogaster.Biochem.Genet.13:603–613.

Tarr,P.T.,Tarling,E.J.,Bojanic,D.D.,Edwards,P.A.,andBalda

´n,A´.(2009).EmergingnewparadigmsforABCGtransporters.Biochim.Biophys.Acta1791:584–593.

Tiwari,S.,Wang,S.,Hagen,G.,andGuilfoyle,T.J.(2006).Transfec-tionassayswithprotoplastscontainingintegratedreportergenes.MethodsMol.Biol.323:237–244.

Tou ghi,K.,Brady,S.M.,Austin,R.,Ly,E.,andProvart,N.J.(2005).TheBotanyArrayResource:e-Northerns,expressionangling,andpromoteranalyses.PlantJ.43:153–163.

Ukitsu,H.,etal.(2007).CytologicalandbiochemicalanalysisofCOF1,anArabidopsismutantofanABCtransportergene.PlantCellPhysiol.48:1524–1533.

Verrier,P.J.,etal.(2008).PlantABCproteins:Auni ednomenclatureandupdatedinventory.TrendsPlantSci.13:151–159.

Whitlock,M.,andSchluter,D.(2009).TheAnalysisofBiologicalData.(GreenwoodVillage,CO:RobertsandCo.Publishers).

Xu,J.,Yang,C.,Yuan,Z.,Zhang,D.,Gondwe,M.Y.,Ding,Z.,Liang,W.,Zhang,D.,andWilson,Z.A.(2010).TheABORTEDMICRO-SPORESregulatorynetworkisrequiredforpostmeioticmalerepro-ductivedevelopmentinArabidopsisthaliana.PlantCell22:91–107.Yang,H.,andMurphy,A.S.(2009).Functionalexpressionandchar-acterizationofArabidopsisABCB,AUX1andPINauxintransportersinSchizosaccharomycespombe.PlantJ.59:179–191.

Yong,Z.,Kotur,Z.,andGlass,A.D.(2010).Characterizationofanintacttwo-componenthigh-af nitynitratetransporterfromArabidop-sisroots.PlantJ.63:739–748.

Zhang,Q.,Blaylock,L.A.,andHarrison,M.J.(2010).TwoMedicagotruncatulahalf-ABCtransportersareessentialforarbusculedevelop-mentinarbuscularmycorrhizalsymbiosis.PlantCell22:1483–1497.Zheng,H.,Rowland,O.,andKunst,L.(2005).DisruptionsoftheArabidopsisEnoyl-CoAreductasegenerevealanessentialroleforvery-long-chainfattyacidsynthesisincellexpansionduringplantmorphogenesis.PlantCell17:1467–1481.

Arabidopsis ABCG Transporters, Which Are Required for Export of Diverse Cuticular Lipids,

Dimerize in Different Combinations

Heather E. McFarlane, John J.H. Shin, David A. Bird and A. Lacey Samuels PLANT CELL 2010;22;3066-3075; originally published online Sep 24, 2010;

DOI: 10.1105/tpc.110.077974

This information is current as of February 13, 2011

Supplemental Data References Permissions eTOCs

CiteTrack Alerts Subscription Information

http:///cgi/content/full/tpc.110.077974/DC1 This article cites 44 articles, 21 of which you can access for free at: http:///cgi/content/full/22/9/3066#BIBL

https://http:///ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X

Sign up for eTOCs for THE PLANT CELL at: http:///subscriptions/etoc.shtml Sign up for CiteTrack Alerts for Plant Cell at: http:///cgi/alerts/ctmain

Subscription information for The Plant Cell and Plant Physiology is available at: http:///publications/subscriptions.cfm

© American Society of Plant Biologists

ADVANCING THE SCIENCE OF PLANT BIOLOGY

PC2010 ABCG transporters, which are required for export of d.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219