Salient Regions Detection for Indoor Robots using RGB-D Data(2)

发布时间:2021-06-06

visualcolor,depthvalueandspatiallayoutsigni cantlyimprovestheaccuracyofobjectdetectionalgorithms.

Thecontributionsandadvantagesoftheproposedmethodareasfollows:

Thegraph-basedsegmentationfusesRGBwithdepthdatatomeasureinconsistenciesintheimage.Thealgorithmachievessuperiordetectionoftexturedorinhomogeneouscoloredobjectscomparedtoourpre-viouswork,wherewewereassumingmostlyuniformlycoloredfruits[6]orclosestobjects[7]andwerethusabletosuccessfullyusethehomogeneityandshortestdistanceinthesegmentation.

Giventheassumptionofrarityinregardtothescenerepresentationforobjectsofinterest,weemployanadaptedandcompactestimationofsalientregionswithessentialRGB-Dcharacteristicsusingcolorluminance,depth,spatiallayoutandboundaryinformation.Fore-groundnessisestimatedbydifferenceofcolor,depthandposition.Backgroundnessisproducedbyarea,boundaryconnectivityandtherelativedistancefromthecenterofoneregiontotheimagecornersinsteadofde ninganarrowborderregionasanindicatorforbackground[8].

The nalsaliencymapisacquiredbycombiningfore-groundandbackgroundmeasuresbasedonaGaussian lter.

Theremainderofthepaperisstructuredasfollows:abriefsummaryofrelevantconceptsinsaliencyalgorithmsispresentedinSectionI-B.SectionIIdescribesourproposedmethod,includingthesegmentationapproachandsaliencyalgorithm.Moreover,visualsamplesofsaliencyresultsarepresentedforthecomparisonofdifferentsaliencymethods.Finally,inSectionIIIwepresenttheexperimentalresultsbasedontwodatasetsandconcludethepaperinSectionIV.B.RelatedWork

Inrecentyears,thedevelopmentofmethodsforobjectrecognitionanddetectionhasbeenrapidlyadvancing.Manyresearchershavestudiedtheeffectsofsaliencydetection[1]–[3],[8]–[10].Ingeneral,saliencydetectionalgorithmscanberoughlyclassi edintotwocategories:top-downandbottom-up.Thetop-downmethods[11]obtainasaliencymapbylearningvisualknowledge.Inotherwords,top-downsaliencymethodsrequirealargeamountofannotatedimagesfortraining.Incontrast,thebottom-upapproaches[1]–[3],[8],[9]focusonalow-levelalgorithmbydeterminingcontrastofimageregionsrelativetotheirsurrounding,intensity,colorandorientation.Theseapproachesdonotrequirepriortraining.Ittietal.[12]werethe rsttoadvocateabottom-upapproachinvisualattention.Theyutilizedlocalcontrastandvisuallow-levelfeaturestoacquiresaliency.Subsequently,Achantaetal.[13]acquiredasaliencymapbycomputingthedifferencebetweentheimageandaGaussianblurredversionoftheoriginalimage.Thoughbeingsimpleandcom-putationallyef cient,themethodfailedwhenthesaliencyregionoccupiedmorethanhalfthepixelsoftheimage,orinthepresenceofcomplexbackgrounds.Achantapresenteda

revisedapproachbasedontheideaofmaximumsymmetricsurround[14],whichisderivedfromtheassumptionofarelationbetweenscaleandpositionofthecandidateobjectintheimage.Chengetal.[2]proposedaglobalhistogram-basedcontrastforsaliencydetection.Thedissimilarityofapairofpatchesisdeterminedbycomparingtheircolorhistograms.Saliency lterswerepresentedbyPerazzietal.[3]relyingonestimatinganelementuniquenessanddistributionasafunctionofimagecontrast.Inspiredbyrecentadvancesincontrastanalysis,Zhuetal.[9]proposedasaliencyoptimizationfrombackgrounddetection.Theyutilizeameasuredescribingtheconnectivitybetweenregionandimageboundaries.

Whilethereisawealthofresearchonvisualsaliencymaps,fewattemptshavebeenmadetocombinedepthvaluestoformasaliencymap.Makietal.[15]presentedacomputationalmodelforattentionbyusingdepthcues.Inthisdepth-basedmodel,closertargetsweremappedtohigherpriorityinanattentionalscheme.Ouerhanietal.[16]ngetal.[5]collectedahumaneye xationdatabaseinboth2Dand3DscenesbytheKinectsensor.Theyderivedepthpriorsthatmaybeappliedtosaliencymapsaimingtopredictvisualattentionareasofhumans.AnothermethodforincorporatingvisualsaliencyanddepthinformationwasproposedbyCiptadietal.[4].Thismethodused3Dlayoutandshapefeaturesfromdepthmeasurementstogenerateasaliencymap.Theypresentedpromisingresultsbysaliency-basedsegmentationusingasuperpixelMarkovRandomField(MRF).Ourworkfollowstheparadigmofbottom-upapproachesincorporatingdepthcues.

II.METHOD

Inthissection,thesegmentationalgorithmandsalientmeasuresunderRGB-Ddataaredescribed.Themaintaskofthisworkistolettherobotautomaticallydetectsalientobjectsinascene.Hence,wefocusontheneedforcaptur-ingsalientobjects.Thealgorithmproposedinthissectionincludesthreestepstoaddressandoptimizethisproblem.At rst,weuseagraph-basedRGB-Dsegmentationtoclusterpixelsinanimage.Thisprocessminimizesthesearchspaceandintegratescommoncolors,texturesanddepthinaregion.Then,wepresentamethodwhichcombinessalientforegroundandbackgroundregionstomodelthecorrespondingsaliencymap.Ina nalstep,wecomputethedesiredsaliencymapbyaweightedcombinationofsaliencysub-maps.

A.Graph-BasedRGB-DSegmentation

Thegoalofthesegmentationprocessistoselectpossi-blesalientregioncandidatesfromanintricateenvironmentrepresentedbytheRGB-Ddatastream.Inthispaper,weapplythegraph-basedapproachfrom[17]tolabeldifferentelementsinanRGB-Dimage.First,wetreatanRGB-Dimageasafully-connecteddirectedgraphG=(V,E)withverticesvi∈Vandasetofedges(vi,vj)∈E.Eachedge

Salient Regions Detection for Indoor Robots using RGB-D Data(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219