(相似三角形)证明题
发布时间:2024-11-21
发布时间:2024-11-21
1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。
2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由,
3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值,
4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗?请说明理由;(2)若S =5,BD=10,求DE的长。
5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45. 求AF的长。
6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。
求证: BM·PA=PN·BP
7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。
8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE∥AB交AC的延长线于点E。
9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结
CE,求证:DE2=AE CE
10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.
(1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.
11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
12、已知:如图:FGHI为矩形,AD⊥BC于D,
FG5
,BC=36cm,AD=12cm 。 GH9
求:矩形FGNI的周长。
13、已知:如图,DE∥BC,AF∶FB=AG∶GE。求证:ΔAFG∽ΔAED。
2
14、己知:如图,AB∥CD,AF=FB,CE=EB. 求证:GC=GF·GD.
15、如图,在正方形ABCD中,E是CD的中点,EF⊥AE. 求证:AE2=AD×AF. [提示:延长AE、BC交于G,先证ΔADE≌ΔGCE,ΔGCE∽ΔAEF]
16、如图,∠ADC=∠ACB=90,∠1=∠B,AC=5,AB=6,求AD的长
17、如图,正方形ABCD中,E是AD的中点,DM⊥CE,AB=6,求DM的长。
B
C
18、己知:如图,AD是ΔABC的角平分线,EF垂直平分AD交BC的延长线于F.
2
求证:FD=FB·FC. [提示:连结AF]
19、已知:如图,ΔABC中,∠ACB=900,F为AB的中点,EF⊥AB.求证:ΔCDF∽ΔECF.
20、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB.
21、已知:如图,DE∥BC,AD2=AF·AB。求证:ΔAEF∽ΔACD。
22、已知:如图,ΔABC中,∠ACB=90,CD⊥AB,DE⊥BC,AC=6,DE=4,求CD和AB的长
23、已知:如图,ΔABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB·BC=AC·CD.
24、已知:如图,CE是RtΔABC的斜边AB上的高,BG⊥AP. 求证:CE2=ED·EP.
25、已知:如图,ΔABC中,AD=DB,∠1=∠2.求证:ΔABC∽ΔEAD.
26、已知:如图,∠1=∠2,∠3=∠4. 求证:ΔDBE∽ΔABC.
27、如图,∠B=900
,AB=BE=EF=FC=1。求证:ΔAEF∽Δ
CEA.
28、如图,在梯形ABCD中,AB⊥BC,∠BAD=90°,对角线BD⊥DC。
(1)△ABD与△DCB相似吗?请说明理由。 (2)如果AD=4,BC=9,求BD的长。
29、已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,△ADQ与△QCP是否相似?为什么?
30、已知:如图所示,D是AC上一点,BE//AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2。则BF是FG、EF的比例中项吗?请说明理由
31、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。
32、如图,AD是Rt△ABC斜边BC上的高,DE⊥DF,且DE和DF
AFBE分别交AB、AC于E、F。则
吗?说说你的理由。
AD
BD
33、如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.(1)求证:△ACF∽BEC;(2)设△ABC的面积为S,求证:AF·BE=2S.
A
F C B
34、如图,在中,过点B作BE⊥CD,垂足为E,连结AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;(3)在(1)
(2)的条件下,若AD=3,求BF的长. A B
D C
E
35
、将正方形ABCD折叠,使顶点A与CD边上的点M重合,折线交AD于E,交BC于F,边AB折叠后与BC交于点G,(1)如果M为CD的中点,求证:DE∶DM∶EM=3∶4∶5.(2)如果M为CD上任一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x(即DM=x)的代数式表示;若无关,请说明理由.
A
第5题图
36、某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10米,20米的梯形空地上种植花木如图①,(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/㎡,当△AMD地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC地带所需费用.(2)若其余地带要种的有玫瑰和茉莉两种花木可供选择,单价分别为12元/㎡和10元/㎡,应选择哪种花木,刚好用完所筹集的资金.(3)若梯形ABCD为等腰梯形,面积不变(如图②)请你设计一种花坛图案,即在梯形内找到一点P,使得△APB≌△DPC,且S△APD=S△BPC,并说明你的理由. A D
B
图①
B
图②
37、如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△AED与以M、N、C为顶点的三角形相似,求CM的长. A D
E
N
B M C
38、如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长.(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形,若不存在,请简要说明理由;若存
C C
在,请求出PQ的长.
P Q
P
A A B B
M
39、操作:如图,在正方形ABCD中,P为CD上一动点(与C、D不重合),使三角尺的直角顶点与点P重合,并且一条直角边始终经过点B,另一条直角边与正方形的某一边所在直线交于点E,探究:(1)观察操作结果,哪一个三角形与△BPC相似?并说明你的结论.(2)当点P位于CD的中点时,你找到的三角形与△BCP的周长比是多少? A D
C B
40、如图,在△ABC中,AB=AC,AD⊥BC,DE⊥AC,M为DE的中点,AM与BE相交于N,AD与BE相交于F. DEAD
求证:(1)CECD;(2)△BCE∽△ADM;(3)AM与BE互相垂直.
E
M
C
D
41、如图,在矩形ABCD中,AB=12㎝,BC=6㎝,点P沿AB边从点A开始向点B以2㎝/s的速度移动;点Q沿DA边从点D开始向点A以1㎝/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么(1)当t为何值时,△QAP为等腰直角三角形;(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似? C Q A B
P
42、如图,已知点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.(1)求证:BE·AD=CD·AE;(2)BC
根据图形特点,猜想可能等于哪两条线段的比(只需写出图形中已有线段的一组比即可),并证明你的
DE
A
结论.
D
B E
C
43、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,M是CD上的点,DH⊥BM于H,DH的延长线交AC的延长线于E.求证:(1)△AED∽△CBM;(2)AE·CM=AC·CD.
C
K M
A B D
2
44、如图,等腰三角形ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上点,且满足AB=DB·CE. (1)求证:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数 E B C
45、如图,P为正方形ABCD的边BC上的点,BP=3PC,Q是CD中点,(1)求证:△ADQ∽△QCP;(2)在现在的条件下,请再写出一个正确结论.
A D
Q C
B
P
46、如图,在△ABC中,∠BAC=90°D为BC的中点,AE⊥AD,AE交CB的延长线于点E.(1)求证:△EAB∽△ECA;(2)△ABE和△ADC是否一定相似?如果相似,加以说明,如果不相似,那么增加一个怎样的条件, △ABE和△ADC一定相似. C
E B D
47、已知,如图,在△ABC中,D是BC的中点,且AD=AC,DE⊥BC交AB于点E, EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长. C
B
48、已知,梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.(1)P为AD上一点,满足∠BPC=∠A, 求证:△ABP∽△DPC;(2)如果点P在AD边上移动(P与点A、D不重合),且满足∠BPE=∠A, PE交直线BC于点E,同时交直线DC于点Q,那么,当点Q在线段DC的延长线上时,设AP=x,CQ=y,
P 求关于的函数解析式,并写出函数的定义域. D
D B C B C E
49、已知,如图,等边三角形ABC中,AB=2,点P是AB边上的任意一点(点P与点A重合,但不与点B重合),过点P作PE⊥BC于E,过点E作EF⊥AC于F,过点F作FQ⊥AB于点Q,设BP=x,AQ=y.(1)写出y与x之间的函数关系式:(2)当BP的长等于多少时,点P与点Q重合;(3)当线段PE、FQ相交时,写出线段PE、EF、FQ所围成三角形
A 的周长的取值范围.
F
B C
50、如图,在△ABC中,AC=BC,F为边AB上的一点,BF∶AF=m∶n(m、n>0),取CF的中点D,连结AD并延长交BC于点E。(1)求BE∶EC的值;(2)若BE=2EC,那么CF所在的直线与边AB有怎样的位置关系?证明你的结论。(3)E点能否成为BC中点?若能,求出相应的m∶n,若不能,证明你的结论。
B
C
E
51、如图,已知,在△ABC中,BA=BC=20㎝,AC=30㎝,点P从A点出发,沿AB以4㎝/s的速度向点B运动;同时点Q从C点出发,沿CA以3㎝/s的速度向A点运动,设运动时间为x, (1)当x为何值时,PQ∥BC;(2)当S△BCQ∶S△ABC=1∶3时,求S△BPQ∶S△ABC的值;(3)△APQ能否与△CQB相似,若能,求出AP的长,若不能,请说明理由.
A C
Q
52、如图,△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连结AE.(1)写出图中所有相等的线段,并加以说明;(2)图中有无相似三角形,若有,请写出一对,若没有,请说明理由;(3)求△BEC与△BEA的面积之比. B A
C D
53、如图,在⊿ABC(AB>AC)的边AB上取一点,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P,求证:BP:CP=BD:CE
54、已知:如图,在△ABC中,AB=AC,AD⊥AB,AD交BC于点E,DC⊥BC,与AD交于点D. 求证:AC2=AE·AD.提示:证明△AEC∽△ACD.
C E
D
55、已知:如图,在△ABC中,∠CAB=90°,AD⊥BC于点D,点E是AC边的中点,ED的延长线与AB的延长线交于点F.
求证:△AFD ∽△DFB.
F
D
C
56、已知:如图,矩形ABCD的对角线AC、BD相交于O,OF⊥AC于点O,交AB于点E,交CB的延长线于
2
OF. 点F,求证:AO=OE ·
A
B
C D
57、已知:如图,ΔABC为等腰直角三角形,∠ACB=90°,点E、F是AB边所在直线上的两点,且∠ECF=135°.
(1)求证:ΔECA∽ΔCFB;
(2)若AE=2,设AB=x,BF=y,求y与x之间的函数关系式,并求定义域;
(3)若点P(a,b)在上述(2)中的函数图象上移动,点P到点M(0,1)的距离为PM,P到x轴的距离为PN,PM-PN的值有变化吗?若认为没有变化,请简要说明理由;若认为有变化,请加以证
明. F A B
(1)略;(2)y=
12
x(x>0);(3)PM-PN=1,不变 4
上一篇:八、《临时用电安全管理规定》
下一篇:神舟笔记本三包规定